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Econ. 511b Spring 1998 C. Sims

RANDOM LAGRANGE MULTIPLIERS

Lagrange multiplier methods are standard fare in elementary calculus courses, and they play a
central role in economic applications of calculus because they often turn out to have
interpretations as prices or shadow prices.  You have seen them generalized to cover dynamic,
non-stochastic models as Hamiltonian methods, or as byproducts of using Pontryagin’s maximum
principle.

In static models Lagrangian methods reduce a constrained maximization problem to an
equation-solving problem.  In dynamic models they result in an ordinary differential equation
problem.  In the stochastic models we are about to consider they result in, for discrete time, an
integral equation problem or, in continuous time, a partial differential equation problem.  Integral
equations and partial differential equations are harder to solve than ordinary equations or
differential equations – they are both less likely to have an analytical solution and more difficult to
handle numerically.  The application of Lagrangian methods to stochastic dynamic models
therefore appears to be of less help in solving the optimization problem than is their application to
non-stochastic problems.  Consequently many references on dynamic stochastic optimization give
little attention to Lagrange multipliers, instead emphasizing more direct methods for obtaining
solutions.  The economic literature has to some extent been guided by this pattern of emphasis.
This is unfortunate, because Lagrangian methods are as helpful in economic interpretation of
models in stochastic as in non-stochastic models.  Also, in general equilibrium models, use of
Lagrangian methods turns out sometimes to simplify the computational problem, in comparison to
approaches that try to solve by more direct methods all the separate optimizations embedded in
the general equilibrium.

I. Discrete Time
Since in this course we are more interested in using these results than in proving them, we

present them backwards.  That is, we begin by writing down the result we are aiming at, then
discuss limits on its range of applicability, and then only at the end sketch some arguments as to
why the results are true.

We consider a problem of the form
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We assume that the vector Z is an exogenous stochastic process, that is, that it cannot be
influenced by the vector of variables that we can choose, C.  For a dynamic, stochastic setting, the
information structure is an essential aspect of any problem statement.  Information is revealed
over time, and decisions made at a time t can depend only on the information that has been
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revealed by time t.  Here, we assume that what is known at t is Z s
s

t
( )l q =−∞ , i.e. current and past

values of the exogenous variables.  Of course implicitly this means that also C s
s

t
( )l q =−∞  is known

at t, since choice of C t( )  always must be a function of the information available at t.  The class of
stochastic processes C that have this property are said to be adapted to the information structure.

We can generate first order conditions for this problem by first writing down a Hamiltonian
expression,
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and then differentiating it to form the FOC’s:
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Notice that:

• In contrast to the deterministic case, the Hamiltonian in (3) and the FOC’s in (4) involve
expectation operators.

• The expectation operator in the FOC is Et , conditional expectation given the information
set available at t, the date of the choice variable vector C t( )  with respect to which the
FOC is taken.

• Because U t  and gt  each depend only on C’s dated t and earlier, the infinite sums in (4)
involve only U’s and g’s dated t and later.

• The β t  term at the left in (4) is superfluous and is usually just omitted.

In finite-dimensional problems, first order conditions are necessary and sufficient conditions
for an optimum in a problem with concave objective functions and convex constraint sets.  The
conditions in (4) are not as powerful, because this is an infinite-horizon problem.  First order
conditions here, as in simpler problems, are applications of the separating hyperplane theorem.
That is, if x  maximizes the continuous, concave function V ( )⋅  over a convex constraint set Γ in

some linear space, and if there is an (infeasible) x∗  with V x V x( ) ( )∗ > , then there is a continuous
linear function f ( )⋅  and a number a such that f x a( ) >  implies that x lies outside the constraint

set and f x a( ) < implies V x V x( ) ( )< .  In a finite-dimensional problem we can always write any
such f  as

f x f xi i( ) = ∑ (5)

If the problem has differentiable V and differentiable constraints of the form g xib g ≤ 0 , then it will

also be true that we can always pick
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But in an infinite dimensional space it may not be true that we can write every continuous linear
function as an infinite sum analogous to (5), and the potentially infinite sums in (7) and in (5) with
fi  defined by (6) might not converge.  It is to rule out these problems that we impose on infinite

horizon problems what are called transversality conditions.

To apply the discussion of the separating hyperplane principle to our current problem,
interpret V as given by the maximand in (1), x  as being C , the optimal C sequence, and x as
being a generic C sequence.  In our stochastic problem, (5)-(7) become
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In order to get from (8) what are given as FOC’s in (4) above, we interchange the order of
summation in the expressions on the left and right sides of (8), then equate coefficients of
correspondingly subscripted C’s.  The version of (8) with orders of summation interchanged is
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from which it is easy to see that (4) follows, if we equate the coefficients on Cs  terms on the two
sides of the equation.  But to justify these manipulations, we must be sure that all the infinite sums
involved converge.  Checking convergence of these sums is checking transversality.

Note that simply “equating coefficients” on the left and right of (9) might seem to imply (4)
either without the “ Et ” operator or with an unsubscripted “E” operator.  To understand why the
Et  appears, remember that Ct  is a random variable, a rule for choosing a numerical value for Ct

as a function of information available at t.  Its “coefficient” in (9) is therefore the sum of all the
terms that multiply it, over both dates and possible states of the world given information at t.  It is
the sum over states consistent with information available at t that results in the Et  operator in the
FOC’s.  This justification may be hard to understand at this point.  It is made explicit in a simple
special case at the end of these notes.

In most economic models, there are only finitely many lags as arguments to g and U, which
makes many of the infinite sums in (8) and (9) become finite.  In fact, most commonly, and in all
dynamic programming problems, U has no lags in its arguments.  To get versions of transversality
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that are closer to what is commonly discussed in economic models, we now specialize to the case
where U U C C Zt t t t= −, ,1b g  and g g C C Zt t t t= −, ,1b g .  In this case (8) becomes

E DU C C Z C D U C C Z C

E D g C C Z C D g C C Z C

t
t t t t t t t t

t

t
t

t
t t t t t t t t

β

β λ

1 1 2 1 1
0

0
1 1 2 1 1

, , , ,

, , , ,

− − −
=

∞

=

∞

− − −

+
L
NM

O
QP

= ⋅ +
L
NM

O
QP

∑

∑

c h c hd i

c h c hd i
(10)
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In general, all four of the infinite sums in (10) and (11) are candidates for failure of convergence,
and thereby for undermining the validity of the Euler equations (given by (4)), obtained by simple
coefficient-matching.  Once we have imposed the Euler equations, the terms in the sums on the
left and right hand sides of (11) are identical, so if one converges, so does the other.

Of course  the convergence of these sums depends on the argument sequence {C} as well as
on the coefficients.  The usual practice, which certainly checks a necessary condition for

application of the separating hyperplanes theorem, is to verify convergence at C Cl q m r= .

However, the convergence has to hold at least over the entire feasible set of {C}’s.  In some
problems, therefore, it turns out that following usual practice and checking convergence only at

C Cl q m r=  is not enough.

II.  Proof for a simple case

A.  Probability Space and Information Structure

We simplify by supposing a probability space Ω containing finitely many points, for which we
will ordinarily use the symbols ω or ν. Each point ω in Ω is a sequence ω = Z Z T( ),..., ( )0l q  of

finitely many vectors Z t( ) , with T, the length of the sequence, the same for each ω in Ω. We

postulate a probability function π ⋅b g  on Ω, with π ωb g  interpreted as the probability that the true

state of the world is ω.1

                                               
1 If you’ve had some measure theory, it may help to recognize that we are sidestepping the

need to consider a sigma­field of events on which probabilities are defined in addition to the
probability space itself. When W contains finitely many points, the only interesting sigma­field is
the class of all subsets of W and probabilities can always be generated from the probabilities of
individual points.
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As usual, a k­dimensional random vector is defined as a function from the probability space Ω
to k­dimensional Euclidean space ℜk . Since each ω in Ω is a sequence of Z’s, we can define a set
of T+1 random vectors Z Z T0; ,..., ;⋅ ⋅b g b g  by

ω ω ω= Z Z T0; ,..., ;b g b gm r . (12)

As before we model this process by saying that the information available at time t is the values
of Z s;ωb g for s t< .  For any ω in Ω, we will denote by ω t  the vector of random variables

ω ω ωt Z Z t= 0; ,..., ;b g b gm r . (13)

A random variable x is then said to be known at t or determined by information available at t if
and only if for any points ω, ν in Ω, ω νt t=  implies x xω νb g b g= .  Note that for the information

structure to be nontrivial, there must be points ω, ν in Ω with ω ν≠  but ω νt t=  for some t<T.

B. Solving the Optimization Problem

We consider the same optimization problem as at the start, defined in (1) and (2) above.  To
convert this to a non­stochastic problem to which we can apply the usual first order conditions,
we need to get rid of the expectation operator and the infinite horizon in (1). This produces
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Assuming the usual regularity conditions (including differentiability of U and the g’s in their C
arguments for each ω with non­zero probability), the first order necessary conditions  for an
optimum in the problem defined by (14) and (2) are
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Now notice that the partial derivatives in (15) are zero whenever ω is not in ν t .  This means that

we can replace the sum over all of Ω at the far left by a sum over ω in ν t .  Furthermore, we can

divide by π ν tb g .  This makes the weighted sums expectations conditional on ν t , according to the

usual elementary definition of conditional probability and conditional expectation.  And finally
notice that the Lagrange multiplier λ ωt s+ b g  multiplies a partial derivative of gt s+ , which depends

only on ω t s+ .  Therefore, without affecting the value of the expression we can replace every

occurrence of λ ωt s+ ( )  with λ ω
π ω
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.  This converts (15) to (4),

which has been our objective.

Obviously this argument does not justify the uses we will make of these first order conditions,
in which the probability space will generally have a continuum of elements.  The references below
discuss these issues more carefully.
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