Macroeconomic Theory Econ 511b Answers to Problem Set #1

January 30, 1998

Question A:

The problem is:

$$\max_{\{C_t, W_t\}_{t=0}^{\infty}} E\left[\sum_{t=0}^{\infty} \beta^t U(C_t)\right]$$

s.t.
$$W_t = (1 + r_{t-1}) (W_{t-1} - C_{t-1}) + Y_t$$
 (μ_t)

The first order conditions are:

$$\frac{\partial}{\partial C_t}$$
 :

$$U'(C_t) = \beta E_t \left[\mu_{t+1} \left(1 + r_t \right) \right]$$

and:

 $\frac{\partial}{\partial W_t}$:

$$\mu_t = \beta E_t \left[\mu_{t+1} \left(1 + r_t \right) \right]$$

If we combine these we get:

$$U'(C_t) = \mu_t$$

But this just the first order condition with respect to C_t from the problem discussed in class. Thus $\mu_t \equiv \lambda_t$.

Question B:

The solution to this problem is simply to recognize that according to the Euler equation

$$U'(C_t) = (1 + r_t) \beta E_t [U'(C_{t+1})]$$

the marginal utility of consumption is only a martingale if $(1 + r_t) \beta \equiv 1$. With a small enough variation in r_t , this discrepancy is negligible.

Question C:

The problem is:

$$\max_{\{C_t, K_t\}_{t=0}^{\infty}} E\left[\sum_{t=0}^{\infty} \beta^t \log C_t\right]$$
$$C_t + K_t = A_t K_{t-1}^{\alpha}$$

First order conditions are:

 $rac{\partial}{\partial C_t}$:

$$\frac{1}{C_t} = \lambda_t$$

and

 $\frac{\partial}{\partial K_t}$:

$$\lambda_t = \alpha \beta E_t \left[\frac{A_{t+1} K_t^{\alpha - 1}}{C_{t+1}} \right]$$

or:

$$\frac{1}{C_t} = \alpha \beta E_t \left[\frac{A_{t+1} K_t^{\alpha - 1}}{C_{t+1}} \right]$$

Suppose now that $K_t/C_t = \kappa$. Plug this into the Euler equation and after some manipulation you find $\kappa = \alpha \beta / (1 - \alpha \beta)$. Consequently, the decision rules are:

$$K_t = \alpha \beta A_t K_{t-1}^{\alpha}$$

$$C_t = (1 - \alpha \beta) A_t K_{t-1}^{\alpha}$$

A constant consumption-capital ratio thus satisfies the first order conditions, but does it also satisfy transversality? We need to check whether the following expression converges as $T \to \infty$:

$$E\left[\sum_{t=0}^{T}\beta^{t}\lambda_{t}dC_{t}\right]+E\left[\beta^{T}\lambda_{T}dK_{T}\right]$$

We know that $\lambda_T = 1/C_T$ and that $K_T = \kappa C_T$. Evaluating the two expressions at the optimal choices $dC_t = C_t$ and $dK_T = K_T$ gives the following:

$$E\left[\sum_{t=0}^{\infty} \beta^{t} \frac{1}{C_{t}} C_{t}\right] = 1/(1-\beta)$$
$$\lim_{T \to \infty} E\left[\beta^{T} \frac{1}{C_{T}} \kappa C_{T}\right] = 0$$

Question D:

The FOC's imply:

$$\frac{1}{C_t} = \alpha \beta E_t \left[\frac{A_{t+1} K_t^{\alpha - 1}}{C_{t+1}} \right]$$

and in part C) it should already have been verified that $\kappa_t = K_t/C_t$ set at $\overline{\kappa} = \alpha\beta/(1-\alpha\beta)$ provides a solution. Once we have fixed this ratio, K and C are determined from time t = 0 onward. Initial total output is determined by K_{t-1} and A_t , and the ratio determines how we split it between C_t and K_t . Any other solution to the FOC's must still satisfy the Euler equation. Using the technology constraint, we can rewrite the equation as:

$$\kappa_t = \alpha \beta E_t \left[\kappa_{t+1} \right] + \alpha \beta.$$

This is an explosive difference equation in $E_t[\kappa_{t+s}]$ as a function of s, so long as $\alpha\beta < 1$, which it is. Therefore, if $\kappa_0 < \overline{\kappa}$, $E_0[\kappa_t]$ becomes negative eventually, implying a non-zero probability of observing a negative K, which is impossible. If $\kappa_0 > \overline{\kappa}$, κ_t explodes upward at the rate $(\alpha\beta)^{-1}$. But one aspect of transversality is the requirement, given in the notes, that:

$$\lim_{T \to \infty} E\left[\beta^T \mu_T K_T\right] = \lim_{T \to \infty} E\left[\beta^T \frac{K_T}{C_T}\right] = \lim_{T \to \infty} E\left[\beta^T \kappa_T\right] = 0.$$

Obviously the last equality is true if κ is constant, and false if κ_t behaves like $(\alpha\beta)^{-T}$. So transversality is violated by all solutions to the Euler equation other than the solution that makes κ constant.