Macroeconomic Theory Econ 511b Answers to Problem Set \#1

January 30, 1998

Question A:

The problem is:

$$
\begin{aligned}
& \max _{\left\{C_{t}, W_{t}\right\}_{t=0}^{\infty}} E\left[\sum_{t=0}^{\infty} \beta^{t} U\left(C_{t}\right)\right] \\
& \text { s.t. } \quad W_{t}=\left(1+r_{t-1}\right)\left(W_{t-1}-C_{t-1}\right)+Y_{t}
\end{aligned}
$$

The first order conditions are:

$$
\frac{\partial}{\partial C_{t}}:
$$

$$
U^{\prime}\left(C_{t}\right)=\beta E_{t}\left[\mu_{t+1}\left(1+r_{t}\right)\right]
$$

and:

$$
\frac{\partial}{\partial W_{t}}
$$

$$
\mu_{t}=\beta E_{t}\left[\mu_{t+1}\left(1+r_{t}\right)\right]
$$

If we combine these we get:

$$
U^{\prime}\left(C_{t}\right)=\mu_{t}
$$

But this just the first order condition with respect to C_{t} from the problem discussed in class. Thus $\mu_{t} \equiv \lambda_{t}$.

Question B:

The solution to this problem is simply to recognize that according to the Euler equation

$$
U^{\prime}\left(C_{t}\right)=\left(1+r_{t}\right) \beta E_{t}\left[U^{\prime}\left(C_{t+1}\right)\right]
$$

the marginal utility of consumption is only a martingale if $\left(1+r_{t}\right) \beta \equiv 1$. With a small enough variation in r_{t}, this discrepancy is negligible.

Question C:

The problem is:

$$
\begin{gathered}
\max _{\left\{C_{t}, K_{t}\right\}_{t=0}^{\infty}} E\left[\sum_{t=0}^{\infty} \beta^{t} \log C_{t}\right] \\
C_{t}+K_{t}=A_{t} K_{t-1}^{\alpha}
\end{gathered}
$$

First order conditions are:

$$
\frac{\partial}{\partial C_{t}}: \quad \frac{1}{C_{t}}=\lambda_{t}
$$

and

$$
\frac{\partial}{\partial K_{t}}:
$$

$$
\lambda_{t}=\alpha \beta E_{t}\left[\frac{A_{t+1} K_{t}^{\alpha-1}}{C_{t+1}}\right]
$$

or:

$$
\frac{1}{C_{t}}=\alpha \beta E_{t}\left[\frac{A_{t+1} K_{t}^{\alpha-1}}{C_{t+1}}\right]
$$

Suppose now that $K_{t} / C_{t}=\kappa$. Plug this into the Euler equation and after some manipulation you find $\kappa=\alpha \beta /(1-\alpha \beta)$. Consequently, the decision rules are:

$$
\begin{aligned}
K_{t} & =\alpha \beta A_{t} K_{t-1}^{\alpha} \\
C_{t} & =(1-\alpha \beta) A_{t} K_{t-1}^{\alpha}
\end{aligned}
$$

A constant consumption-capital ratio thus satisfies the first order conditions, but does it also satisfy transversality? We need to check whether the following expression converges as $T \rightarrow \infty$:

$$
E\left[\sum_{t=0}^{T} \beta^{t} \lambda_{t} d C_{t}\right]+E\left[\beta^{T} \lambda_{T} d K_{T}\right]
$$

We know that $\lambda_{T}=1 / C_{T}$ and that $K_{T}=\kappa C_{T}$. Evaluating the two expressions at the optimal choices $d C_{t}=C_{t}$ and $d K_{T}=K_{T}$ gives the following:

$$
\begin{aligned}
E\left[\sum_{t=0}^{\infty} \beta^{t} \frac{1}{C_{t}} C_{t}\right] & =1 /(1-\beta) \\
\lim _{T \rightarrow \infty} E\left[\beta^{T} \frac{1}{C_{T}} \kappa C_{T}\right] & =0
\end{aligned}
$$

Question D:

The FOC's imply:

$$
\frac{1}{C_{t}}=\alpha \beta E_{t}\left[\frac{A_{t+1} K_{t}^{\alpha-1}}{C_{t+1}}\right]
$$

and in part C) it should already have been verified that $\kappa_{t}=K_{t} / C_{t}$ set at $\bar{\kappa}=$ $\alpha \beta /(1-\alpha \beta)$ provides a solution. Once we have fixed this ratio, K and C are determined from time $t=0$ onward. Initial total output is determined by K_{t-1} and A_{t}, and the ratio determines how we split it between C_{t} and K_{t}. Any other solution to the FOC's must still satisfy the Euler equation. Using the technology constraint, we can rewrite the equation as:

$$
\kappa_{t}=\alpha \beta E_{t}\left[\kappa_{t+1}\right]+\alpha \beta .
$$

This is an explosive difference equation in $E_{t}\left[\kappa_{t+s}\right]$ as a function of s, so long as $\alpha \beta<1$, which it is. Therefore, if $\kappa_{0}<\bar{\kappa}, E_{0}\left[\kappa_{t}\right]$ becomes negative eventually, implying a non-zero probability of observing a negative K, which is impossible. If $\kappa_{0}>\bar{\kappa}, \kappa_{t}$ explodes upward at the rate $(\alpha \beta)^{-1}$. But one aspect of transversality is the requirement, given in the notes, that:

$$
\lim _{T \rightarrow \infty} E\left[\beta^{T} \mu_{T} K_{T}\right]=\lim _{T \rightarrow \infty} E\left[\beta^{T} \frac{K_{T}}{C_{T}}\right]=\lim _{T \rightarrow \infty} E\left[\beta^{T} \kappa_{T}\right]=0
$$

Obviously the last equality is true if κ is constant, and false if κ_{t} behaves like $(\alpha \beta)^{-T}$. So transversality is violated by all solutions to the Euler equation other than the solution that makes κ constant.

