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I.  The Single-Agent-Type Model
The agent maximizes
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subject to

C I f K L At t t t t+ = −( , , )1 , t=1,….,� , (2)

K I Kt t t= + −δ 1 (3)

Lt ≤ 1 (4)

and

Kt ≥ 0, all t. (5)

We are following the usual (in these notes, not necessarily the world at large) conventions that C,
L, K, and I are choice variables and that variables dated t or earlier are known when variables
dated t are chosen.  Using the methods we have applied earlier on problems like this, we arrive at
first-order conditions

∂C: ′ =U Ct t( ) λ (6)

∂K: λ β λ δt t t t t tE D f K L A= ++ + +1 1 1 1, ,� �	 
  . (7)

To facilitate comparison with versions of the model we will take up below, we derive here
the linearization of this model about its deterministic steady state.  We use (3), (4) and (6) to
reduce the system to one in the two variables C and K alone.  We also use the fact that, from (7),
in steady state

β δ− = ′ +1 f  . (8)

Here we are introducing the convention that unsubscripted variables are evaluated at their steady-
state values and that ′= −f D f K L At t t t1 1( , , ) .  We will assume throughout also that f  is linear
homogenous in K and L jointly, and that At  enters f as a multiplicative factor.  Since we have
discussed linearization previously in a more complicated model, here we simply display the
linearization:
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The “d” operator denotes deviation from steady state.  It is not hard to verify that this system has

two real roots whose product is β −1 .

We will be comparing this solution to other solutions as we go along.  Since in some cases
analytic solution is clumsy, we will compare two particular special cases numerically.  One of
these is the Cobb-Douglas, 100% depreciation, log utility case for which we know that an
analytic solution exists, with C K  constant.  The other will set �=.9 (10% per period
depreciation), but retain the Cobb-Douglas, log utility specification.  In both versions of the
model our numerical calculations will assume �=.95, �=.3, i.i.d. At  with mean A = 1.  The
stable solution for the system has the form
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For our two cases, (case 1 is �=0), we have
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II.  Arrow-Debreu Equilibrium
Now we postulate the existence of a representative firm as well as a representative consumer.

The decisions of the firm and consumer are coordinated by market prices, which both types of
agent take as unaffected by their decisions.  The prices are quoted at time 0, and are contingent
both on the date t and on the state of the world �.  We think of � as a point in the set � and as

determined by an infinite sequence of random variables Xt t� � =
∞

0
.  Information available at t is

given by ω t s s

t
X= =� � 0

, which can be thought of as determining a subset of � consisting of X

sequences with the same first t+1 elements.  The consumer’s objective function is still (1), but
her budget constraint is now

P t C W L yt t t t t t t t
t
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where P is the goods price, W is the wage in goods units, and y is the profit distribution by the
representative firm, which is owned by the consumer.  To justify the use of the summation sign
in (13), we have to think of the number of distinct X sequences � as finite, or at least countable,
which implies that in finite time uncertainty vanishes.  That is, there is some T such that for t>T,
there is only one � that matches ω t .  To eliminate this unappealing implication we would have
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to allow for an uncountably infinite �, treat P t( , )⋅  as a function over it, and replace the sum over

� by integrals.  This would add mathematical complications, however, so we stick with the
assumption of countable � for now.

The firm is instructed by its owners to maximize the value of its profit distributions, i.e.

P t yt t
t

( ; ) ( )ω ω
ω =

∞

∑∑
0

 . (14)

The firm’s constraints, indexed by t and ω t  are

y f K L A K K W Lt t t t t t t t t t t t t t t t( ) ( ( ), ( ), ( )) ( ) ( ) ( ) ( )ω ω ω ω ω δ ω ω ω= − + −− − − −1 1 1 1  . (15)

We suppose that there is a probability function � defined on �, so that (1) can be rewritten as

π ω β ω
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To make the first-order conditions emerge in a simple form, we introduce the notation

p t

P t

t
t

t
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π ω
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∑

 . (17)

To justify (17), we have to assume that π ωt t( ) , its denominator, never vanishes when the

numerator is nonzero.  This is the only restriction we need on �.  It does not have to be the “true”
probability measure, and it is not necessary that everyone agree that it expresses their beliefs.
The equilibrium can be described in terms of the P’s without introducing �’s at all.

The market-clearing condition in labor is already imposed implicitly through the use of the
same symbol L in both the firm and consumer problems.  For goods, the market clearing
condition is that goods used for consumption and investment at t must match goods produced at
t.  That is,

C I f K L At t t t t t t( ) ( ) , ,ω ω+ = −1� �  . (18)

This is not perceived as a constraint by the typical consumer or firm.  Each consumer sees her
budget constraint (13) as allowing income at any date to be converted into consumption at any
date at a rate of tradeoff determined by the P(t;�) values.  But the prices must adjust so that in
equilibrium consumers choose to consume an amount consistent with the amounts of output and
investment chosen by producers.

First-order conditions for the consumer are

∂Ct: β π ω λβ π ω ω λ ωt
t t

t
t t t tU p t U p t( ) ( ) ( ; ), ( ; )′ = ∴ ′ = (19)

First-order conditions for the firm are

∂yt: p t t t t( ; ) ( )ω µ ω= (20)

∂Lt: µ ωt t L t tD f W( ) − =� � 0 (21)
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In deriving (20)-(22) we are using the convention that in the Lagrangian the multiplier on the

t t,ω  constraint of the firm is β π ω µ ωt
t tt( ) ( ; ) .  Also, we are using the fact that π ω π ω( )t t+1 � �

is the conditional probability of ω t+1 given that ω t  has occurred.

The FOC’s (6) and (7) from the single-agent problem can be solved to eliminate �, and the
resulting equation can also be derived from (19), (20), and (22).  Thus an Arrow-Debreu
equilibrium satisfies the constraints and FOC’s of the single-agent problem.

III.  Autonomous Firms
We now consider the opposite extreme case, in which the representative firm gets no

guidance from asset prices in making investment decisions.  We postulate that the firm’s
objective function is increasing in its profit distributions, but that it has its own “utility function”
for those distributions that does not have any necessary link to the representative consumer’s
utility function.  That is, we postulate that firms maximize

E yt
t
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 , (23)

with ′ >φ 0, ′′ ≤φ 0 .  The firm’s discount factor � is allowed to differ from that of consumers.  A
version of this assumption that appears regularly in the applied literature on investment is that
(23) holds with θ β=  and � the identity function, so that firms maximize expected current and

future profits discounted at the fixed rate �.  The firm’s constraints are

y f K L A K K W L

K
t t t t t t t t

t

= − + −
≥
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− −( , , )1 1

0

δ
, all t . (24)

The consumer still maximizes the objective function (1), but now with the constraints

C W L y

L
t t t t

t

= +
≤ 1

, all t. (25)

Note that the consumer here has no intertemporal decision to make at all.  Because we have
assumed leisure has no utility, Lt  will always be at its upper bound of 1.  Individuals take wages
W and profit distributions y as beyond their control, so (25) determines C without any reference
to the consumer’s objective function.

Obviously here the only interesting economic decision in the economy, the choice of how
much to invest and how much to consume each period, is being made by the firm, using an
objective function that does not match that of the people in the economy.  We should not expect
the resulting equilibrium to be close to optimal in general.  It is interesting to ask, though,
whether with the firm’s discount factor � matching the individual’s discount factor �, there might
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be �’s for which the solution to this problem would match or come close to the social optimum.
The firm’s FOC’s are

∂y: ′ =φ µ( )yt t (26)

∂L: W D f K L At L t t t= −( , , )1 (27)

∂K: µ θ µ δt t t K t t tE D f K L A= ++ + +1 1 1( , , )� � (28)

where µ t  is the Lagrange multiplier on the constraint.  Note that in the deterministic steady state
we will have

θ δ⋅ + =D f KK ( , , )11 1	 
  . (29)

By comparing (29) to (7), we see that the values of K , and therefore C , match those of the
single-agent model if θ β= , but not otherwise.

When, as in our case 1, δ = 0 , and in addition � is logarithmic and θ β= , this autonomous-
firm model can be shown to have an exact solution in which y remains proportional to K, and this
gives the same C time paths as the complete markets solution.  However outside this special case,
as in our case 2, the model does not have an analytic solution.  To study its behavior we linearize.
Here we reduce the model to a two-variable system in y and K, using (27) to eliminate W,
arriving at
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To give this system the greatest possible chance of matching the complete markets solution, we
will examine it numerically for the case where � is the log function and �=�, with the rest of the
parameters set as in cases 1 and 2 of section I.  Note that with the matching discount rates, the
steady states of this model do match those of the complete markets model.  This leads to G1  and
H matrices as follows:
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0 0158

0 3

0088

1664
=

�

�
�

�

�
� =

�

�
�

�

�
�

.

.
,

.

.
. (31)

Case 2: G H1
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Because this system is in terms of y and K instead of C and K, the matrices displayed here would
not match those of section I even if C and K followed the same paths.  However, since the second
row both here and in section I is a difference equation in K alone, we can see immediately
whether the solutions match, for either case.  If both the second row of G1  and the lower element
of H match, then the solutions are first-order equivalent, as the K paths will be and the social
resource constraint determines the C path from the K path.  We can see that for case 1 the
autonomous firm solution does match the complete markets solution to first order, as we would
hope given that we know this is true of the exact solution. However in case 2 the solutions do not
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match.  The coefficient on lagged K  is slightly larger in the autonomous-firm model, but more
importantly the responsiveness of K to shocks in A is several times bigger in the complete-
markets model.  The firm tends to smooth K’s time path more than is optimal, letting shocks
have larger current impact on C.

IV. Incomplete Asset Markets
As you should know from your micro theory course, the real allocations in an Arrow-Debreu

equilibrium can generally be duplicated without a complete market for claims arbitrarily far in
the future, if instead there is a one-period-ahead complete contingent claims market at each date.
In a model like the stochastic growth model, where the disturbance At  is generally thought of as
continuously distributed,1 this would require an uncountable infinity of assets to be traded at each
date.  Since in reality a finite number of assets are traded, it is interesting to explore how a
competitive equilibrium with a few assets compares to one where there are complete markets.

We consider the special case where there is a single traded asset, denominated in shares, with
the return at t per share purchased at time t-1 denoted zt .  We do not yet take a position on what
the stochastic process of z will be, though we will assume that it is regarded by agents as
unaffected by individual agents’ actions.  We denote by Qt  the price of the asset at time t.
Because consumers can no longer instruct firms to maximize the value of the stream of profits
(because there are no quoted prices to use to value this uncertain stream), there must be some
other objective function given the firm.

The consumers’ objective function is still (1), but her budget constraint becomes

C Q S W L Q z S yt t t t t t t t t+ = + + +−� � 1  . (33)

We need also to impose a constraint, which we hope does not bind in equilibrium, that indefinite
borrowing is not possible, e.g. that

Q S Bt t
t≥ − ν (34)

for some constants B>0 and ν β∈ −( , )0 1 .

The firm still has the objective function (23), but now with the constraint

y Q S f K L A K K W L Q z St t t t t t t t t t t t t− = − + − − +− − −( , , )1 1 1δ � �  . (35)

Note that we use the same symbol S for both the purchases of the security by the consumers and
the sales of the security by the firm, implicitly imposing market clearing with zero net supply of
the security.  The firm also must have a limit on its borrowing, which becomes (since S  is
securities issued by the firm)

Q S Bt t
t≤ ν  . (36)

Now the consumer’s FOC’s are (6) and

                                                
1 That is, with a density function on the real line, like the log-normal or exponential for example.
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λ β λt t t t t tQ E Q z= ⋅ ++ + +1 1 1� � . (37)

The firm’s FOC’s are

∂yt: ′ =φ µ( )yt t (38)

∂Lt: µ t t L tW D f⋅ − =� � 0 (39)

∂Kt: µ θ µ δt t t K tE D f= ⋅ ++ +1 1� � (40)

∂St: µ θ µt t t t t tQ E Q z= ⋅ ++ + +1 1 1� �  . (41)

This is more promising than the autonomous firm model.  It is still true that (40) uses 	

instead of � as the stochastic discount factor, but now we have (41) and (37), which seem to
require at least some similarity in behavior between the discount factors θµ µt t+1  and βλ λt t+1 .

From (6) we know that in steady state � is constant.  Then from (37) we conclude that Q is also

constant, at the value z ( )β − −1 1 .  Then (41) implies

µ µ β θt t+ =1  . (42)

Using this in (40) lets us conclude that in this model we have the same equation (7) determining
steady state capital stock as in the single agent model, even when β θ≠ .

Suppose we linearize the system about steady state.  We now have to keep track of more
variables, because y, C, K, Q and S all interact.  We also stick to the case β θ=  to avoid having
to deal with trends in y and S in “steady state.”  We write the system as

Γ Γ Ψ Π0 1 1dx dx dt t t t= + +− ε η  , (43)

where the 
 vector are endogenous prediction errors and the � vector is exogenous disturbances.
We define
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and arrange the equations in the order (35), (35)+(33) (the social resource constraint), (37), (40),
and (41).  The result is
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where γ φ φφ = − ′′ ′  and γ U U U= − ′′ ′ .  We also have
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To keep our numerical solutions comparable, we will take the steady state to have S=0.  The
solutions for this model in our two cases are
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Case 2 G H1
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Comparing (47) with (11) and (48) with (12), we see that the last two rows of the larger system
match the smaller system exactly. This system, like that with autonomous firms, exactly
reproduces the complete-markets equilibrium in case 1.  Both y and C in that case move exactly
in proportion to K, so that ′φ  and ′U  move exactly in proportion.  This is signaled in the
linearized solution by the fact that the third element of H, the effect of a disturbance in A on S, is
zero.  That is, the linearization implies that if we start with S=0, random shocks do not generate
non-zero S.  Without this condition, y and C could not remain proportional, as the third row of
G1  implies that S, once perturbed away from zero, will tend to drift.  (The unit coefficient on
lagged S implies that S has no tendency to return to steady state.)  The first row of G1  implies
that y will tend to follow (with opposite sign) any drift in S.  In case 2, we see from the third
element of H that random disturbances do affect S, so for this case S and y will drift away from
their steady state values and y and C do not remain strictly proportionate.

It is therefore not possible in case 2 that the random discount factor that firms use to evaluate
investments, βφ φ β′ ′ =+ +t t t ty y1 1 , is exactly the same as what consumers would use, i.e.
β β′ ′ =+ +U U C Ct t t t1 1.  There will be differences in the time paths of K and C between the
complete and incomplete markets economies.  The match between the linearized solutions
implies, though, that the differences will be small as a proportion of variation in the economy
when the stochastic disturbances to the economy are small.


