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Example: LQPY
The ordinary LQ permanent income model has agents solving

max
{Cs,Ws}

E
[ ∞∑

t=0

βt(Ct − 1
2C

2
t )

]

subject to

Wt = R(Wt−1 − Ct−1) + Yt (∗)
E[β.5tWt] →

t→∞
0 . (∗∗)

The solution, for the simple case where Rβ = 1 and Yt is i.i.d. with mean
Ȳ , is well known to be

Ct = (1− β)Wt + βȲ .
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A reasonable modification of LQPY

• Where does the limit on the growth rate of W in (∗∗) come from?
We believe that the agent should see constraints on making W large
and negative (i.e., borrowing a lot), but why the constraint on positive
accumulation at a high rate?

• So replace (∗∗) by lim inf E[R−tWt] ≥ 0, a standard form for a “no-
Ponzi” condition. Then the problem is no longer LQ, and the standard
solution is not optimal, so long as Var(Yt) > 0 and Yt ≥ 0 with
probability one.
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Why is the standard solution not optimal?

It implies
Wt = Wt−1 + Yt − Ȳ . (1)

So EtWt+1 = Wt, i.e. Wt is a martingale.

Theorem: A bounded martingale converges almost surely.

Since the changes in Wt always have the same nonzero variance, W
does not converge. Therefore, by the theorem, it is unbounded — both
above and below. In particular, eventually it will get above

W ∗ =
1

R− 1
.

Once Wt ≥ W ∗, we can set Ct ≡ 1, which delivers maximum possible
(“satiation level”) utility, forever, and we can be sure that no matter how
bad our luck in drawing Yt values, we can avoid violating Wt ≥ 0.
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This has to be better than continuing with the standard solution, which
would at this point push C above 1. This deviation from the standard
solution entails W increasing toward infinity at the rate β−t, which is why
with (∗∗) imposed we do find the standard solution to be optimal.
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Standard TVC and our modified LQPY problem

The Lagrange multiplier on the constraint in this problem is λt = 1−Ct,
and the usual TVC is

E0[βtλtWt] = E0[βt(1− Ct)Wt] →
t→∞

0 .

Since Wt is a random walk in this solution and has i.i.d. increments, its
second moment is O(t), as is (therefore) E0[CtWt]. The conventional TVC
is satisfied.

So this is a problem with concave objective function, and convex
constraints. The “standard solution” satisfies all the Euler equations and the
conventional TVC — but it is not in fact an optimum. In a standard finite-
dimensional problem, a concave objective function and convex constraint
sets imply that any solution to the FOC’s is an optimum. What’s wrong
here?
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Notation: The Most General Setup

• Our practice: things dated t are always “known” — i.e. available for use
as arguments of decision functions — at t or later. This convention differs
from that in much of the growth literature, and in the classic Blanchard-
Kahn treatment of linear RE models, but it saves much confusion. Also
variables chosen at t are dated t.

• A stochastic optimization problem in general form:

max
C∞

0

E

[ ∞∑
t=0

βtUt

(
Ct
−∞, Zt

−∞
)
]

(2)

subject to
gt

(
Ct
−∞, Zt

−∞
) ≤ 0, t = 0, ...,∞ , (3)

where we are using the notation Cn
m = {Cs, s = m, . . . , n}.
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• An implicit constraint: {Ct} is adapted to {Zt}. Each Ct is not a
vector of real numbers, but instead a function mapping the information
available at t, Zt

−∞, into vectors of real numbers.

• It is possible to eliminate the random variables and expectations from
our discussion by considering the simplified special case where at each
t there are only finitely many possible values of Zt

−∞. Then the Ct

decision function is just a long vector, characterized by the list of values
it takes at each possible value for Zt

−∞; expectations are just weighted
sums.

7



Lagrangian and FOC’s

E

[ ∞∑
t=0

βtUt

(
Ct
−∞, Zt

−∞
) −

∞∑
t=0

βtλtgt

(
Ct
−∞, Zt

−∞
)
]

, (4)

∂H

∂C(t)
=

βtEt

[ ∞∑
s=0

βs∂Ut+s

∂C(t)
−

∞∑
s=0

βs ∂gt+s

∂C(t)
λt+s

]
= 0,

t = 0, ...,∞ (5)
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Necessity and Sufficiency?

Separating Hyperplane Theorem If V (·) is a continuous, concave
function on some linear space, and if there is an x∗ with V (x∗) > V (x̄),
then x̄ maximizes V over the convex constraint set Γ if and only if there
is a non-constant continuous linear function f(·) such that f(x) > f(x̄)
implies that x lies outside Γ and f(x) < f(x̄) implies V (x) < V (x̄).
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In a finite-dimensional problem with x n × 1, we can always write any
such f as

f(x) =
n∑

i=1

fi · xi (6)

where the fi are all real numbers. If the problem has differentiable V and
differentiable constraints of the form gi (x) ≤ 0, then it will also be true
that we can always pick

fi =
∂V

∂xi
(x̄) (7)

and nearly always write

f(x) =
∑

j

λj
∂gj(x̄)

∂x
· x (8)

with λi ≥ 0, all i. The “nearly” is necessary because of what is known as
the “constraint qualification”.
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Kuhn-Tucker Theorem (sufficiency) If

• V is a continuous, concave function on a finite-dimensional linear
space,

• V is differentiable at x̄,
• gi, i = 1, . . . , k are convex functions, each differentiable at x̄,
• there is a set of non-negative numbers λi, i = 1, . . . , k such that

∂V (x̄)
∂x

=
∑

i

λi
∂g (x̄)

∂x
, and

• gi (x̄) ≤ 0 and λigi(x̄) = 0, i = 1, . . . , k ,

then x̄ maximizes V over the set of x’s satisfying gi (x) ≤ 0, i =
1, . . . , k.
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The fly in the ointment: convergence of infinite sums

Interpret V as given by the maximand in (2), x̄ as being C̄, the optimal
C sequence, and x as being a generic C sequence. In our stochastic
problem, (6)-(8) become

E

[ ∞∑
t=0

t∑
s=0

βt∂Ut

(
Ct

0, Z
t
0

)

∂Cs
· Cs

]
= f (C∞

0 )

= E



∞∑

t=0

βtλt

t∑
s=0

∂gt

(
C̄

t
0, Z

t
0

)

∂Cs
· Cs


 (9)
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The version of (9) with orders of summation interchanged (?!)is

E



∞∑

s=0

∞∑
t=s

βt
∂Ut

(
C̄

t
0, Z

t
0

)

∂Cs
· Cs




= E



∞∑

s=0

∞∑
t=s

βtλt

∂gt

(
C̄

t
0, Z

t
0

)

∂Cs
· Cs


 , (10)

Using the law of iterated expectations, together with the fact that Cs is a
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function of information known at s, we can expand this expression to

E



∞∑

s=0

Es



∞∑

t=s

βt
∂Ut

(
C̄

t
0, Z

t
0

)

∂Cs


 · Cs




= E



∞∑

s=0

Es



∞∑

t=s

βtλt

∂gt

(
C̄

t
0, Z

t
0

)

∂Cs


 · Cs


 . (11)

Since Cs can be any function of Zs
0 for which the objective function is

defined, it is clear that we cannot guarantee this equality for all candidate
Cs sequences unless the coefficients on Cs on both sides of the equation
are equal with probability one. Imposing this condition gives us the Euler
equations.
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Some simplifications

• Drop t subscripts on U and g.

• Give U and g each only finitely many arguments.

• I.e., Ut = U (Ct, Ct−1, Zt) and gt = g (Ct, Ct−1, Zt)
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Infinite-dimensional stochastic Kuhn-Tucker

Infinite-Dimensional Kuhn-Tucker Suppose

i. V
(
C∞
−∞, Z∞

−∞
)

= lim inf
T→∞

E0

[
T∑

t=0
βtU (Ct, Ct−1, Zt)

]
;

ii. U is concave and each element of g(Ct, Ct−1, Zt) is convex in Ct and
Ct−1 for each Zt, and all integer t ≥ 0;

iii. there is a sequence of random variables C̄
∞
0 such that each C̄t is a

function only of information available at t, V (C̄∞
−∞, Z∞

−∞) is finite
with the partial sums defining it on the right hand side of (i) converging
to a limit, and, for each t ≥ 0, g(C̄t, C̄t−1, Zt) ≤ 0 with probability
one;

iv. U and g are both differentiable in Ct and Ct−1 for each Zt and the
derivatives have finite expectation;
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v. There is a sequence of non-negative random vectors λ∞0 , with
each λt in the corresponding information set at t, and satisfying
λtg

(
C̄t, C̄t−1, Zt

)
= 0 with probability one for all t;

vi.

∂U
(
C̄t, C̄t−1, Zt

)

∂Ct
+ βEt

[
∂U

(
C̄t+1, C̄t, Zt+1

)

∂Ct

]

= λt

∂g
(
C̄t, C̄t−1, Zt

)

∂Ct
+ βEt

[
λt+1

∂g
(
C̄t+1, C̄t, Zt

)

∂Ct

]
(12)

for all t (i.e., the Euler equations hold);
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vii. (transversality) for every feasible C sequence Ĉ
∞
0 , either

V
(
C̄
∞
−∞, Z∞

−∞
)

> V
(
Ĉ
∞
−∞, Z∞

−∞
)

,

or

lim sup
t→∞

βt

E

[(
∂U

(
C̄t, C̄t−1, Zt

)

∂Ct
− λt

∂g
(
C̄t, C̄t−1, Zt

)

∂Ct

)

·
(
Ĉt − C̄t

)]
≤ 0 . (13)

Then C̄
∞
0 maximizes V subject to g (Ct, Ct−1, Zt) ≤ 0 for all t ≥ 0 and

to the given non-random value of C−1.
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Where the TVC comes from

For the full proof, refer to the notes. But we can point out how the
TVC arises. The general FOC we wrote down before specializes, with this
first-order setup, to

lim
T→∞

E

[
T∑

t=0

βt

(
∂(U(Ct, Ct−1, Zt)− λtg(Ct, Ct−1, Zt)

∂Cs

)]
= 0

where besides using the first-order lags assumption, we have also made
explicit the need for the infinite sum to be defined as a limit.
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For all 0 ≤ s ≤ T − 1, this delivers the Euler equation:

∂
(
U(Cs, Cs−1, Zs)− λsg(Cs, Cs−1, Zs)

)

∂Cs

+ βEs

[
∂
(
U(Cs+1, Cs, Zs+1)− λs+1g(Cs+1, Cs, Zs+1)

)

∂Cs

]
= 0 .

But for s = T , we get instead

∂
(
U(CT , CT−1, ZT )− λTg(CT , CT−1, ZT )

)

∂CT
= 0 .
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In a finite-horizon problem, this is the TVC, and it is part of the
necessary and sufficient FOC’s in a well-behaved problem. In an infinite-
horizon problem, it does not have to hold at any one T , but we have to
control the behavior of the left-hand-side, to guarantee that when we specify
coefficients in the “tangent plane” one by one, with the Euler equations,
the resulting linear functional can be defined as a limit of finite sums.
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Necessity

The Euler equations are always necessary conditions. There are regularity
conditions that make transversality part of the necessary conditions, but
specifying these regularity conditions gets us into deeper mathematical
waters, so we will not take this up.
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Simplification to the “standard” TVC

Note that for those elements of the vector of TVC’s in (13) that
correspond to derivatives with respect elements of the Ct vector that do
not appear with a lag in U or g, the Et terms in the Euler equations (12)
drop out, so that the Euler equations guarantee that for these elements of
C, the TVC’s hold trivially — the expression that is supposed to go to zero
in lim sup actually is identically zero. For elements of the Ct vector that
enter only with a lag, the corresponding TVC components are identically
zero. Thus there is only one non-trivial TVC per “state” variable, if we
label as a state any variable that enters both unlagged and with a lag.
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Restrictions

Commonly available additional simplifications:

a. The subvector of C that enters both currently and with a lag, which we
will call “S”, for “state vector”, can be “solved for” using the constraints:

St ≤ h(St−1, It, Jt−1Zt) ,

where It, Jt is notation for the part of the C vector other than S.

b. Paths with E0[lim inf βtλtSt < 0] are not feasible while paths in which
limβtλtSt = 0 are feasible;

c. St does not enter the U function at all.
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The simplified condition

Under these conditions our general TVC (13) greatly simplifies, to
become

lim
t→∞

E0

[
βtλtS̄t = 0

]
.

In other words we can get rid of the lim sup operator, replacing it with an
ordinary lim, we get rid of the term depending on U , and we avoid having
to consider the alternative sequences Ĉ.

Commonly, all the λt’s are non-negative, while we have a lower bound
on St. Then the “dot-product” form of the TVC is equivalent to the
requirement that each E0[βtλitS̄it] separately converges to zero, so we can
check the transversality condition one variable at a time.
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Application to the Linear-Quadratic Permanent Income
Example

In the conventional solution, we get from the FOC’s

Ct = EtCt+1 .

For the conventional solution to be correct, the constraint must be
interpreted as an equality, so that to get it into our Kuhn-Tucker framework
we must treat as two inequality constraints (both linear, so both convex
despite the sign change):

µ: Wt ≤ R(Wt−1 − Ct−1 + Yt

ν: −Wt ≤ −(
R(Wt−1 − Ct−1) + Yt

)
.
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There are then two positive Lagrange multipliers, µ and ν.

If we ignore the growth constraint (∗∗), the solution to the problem
is just to set Ct ≡ 1, even though apparently Euler equations and TVC
are satisfied by the conventional solution. The condition (a) above is not
satisfied, however, because instead of having Wt on the left, one of the
constraints has −Wt on the left, so the constraints are not “standard”. In
particular, when the constraint that has −Wt on the left is binding, Wt is a
“bad”, not a “good”. It, together with the requirement in the conventional
solution that W not grow too fast, is what forces us to consume beyond
satiation.

In the version of the model with the no-Ponzi condition replacing the
growth constraint, the problem is again non-standard, because still one of
the constraints has a −Wt on the right-hand side.

To see that the full TVC is violated in the conventional solution if there
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is no W -growth constraint, observe that the TVC is

lim sup
t→∞

βtE
[
(1− C̄t)(Ĉt − C̄t)− (µt − νt)(Ŵt − W̄t)

] ≤ 0 .

The Euler equations for C and W allow us to conclude that µt−νt = 1−Ct.
In the standard solution, 1 − C̄t is a random walk, so it becomes positive
infinitely often and negative infinitely often. It is feasible, as we have
seen, to choose consumption equal to 1 in every period that the standard
solution would make it exceed one, and to leave consumption equal to its
standard-solution value at all other times. This yields higher utility than
C̄t and it implies that eventually Ŵt = O(Rt). With our assumption that
Rβ = 1, we see then that there are feasible W ’s for which the lim sup in
the W component of the TVC is in fact positive. Also, since this Ĉt makes
Ĉt − C̄t negative at exactly those dates when 1 − C̄t is negative, the C
component of the TVC must also have a non-negative lim sup.
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