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RANDOM LAGRANGE MULTIPLIERS AND TRANSVERSALITY

1. INTRODUCTION

Lagrange multiplier methods are standard fare in elementary calculus courses, and they
play a central role in economic applications of calculus because they often turn out to have
interpretations as prices or shadow prices. You have seen them generalized to cover dynamic,
non-stochastic models as Hamiltonian methods, or as byproducts of using Pontryagin’s max-
imum principle. In static models Lagrangian methods reduce a constrained maximization
problem to an equation-solving problem. In dynamic models they result in an ordinary dif-
ferential equation problem.

In the stochastic models we are about to consider they result in, for discrete time, an
integral equation problem or, in continuous time, a partial differential equation problem. In-
tegral equations and partial differential equations are harder to solve than ordinary equations
or differential equations — they are both less likely to have an analytical solution and more
difficult to handle numerically. The application of Lagrangian methods to stochastic dynamic
models therefore appears to be of less help in solving the optimization problem than is their
application to non-stochastic problems. Consequently many references on dynamic stochas-
tic optimization give little attention to Lagrange multipliers, instead emphasizing more direct
methods for obtaining solutions.

The economic literature has to some extent been guided by this pattern of emphasis. This
is unfortunate, because Lagrangian methods are as helpful in economic interpretation of
models in stochastic as in non-stochastic models. Also, in general equilibrium models, use
of Lagrangian methods turns out sometimes to simplify the computational problem, in com-
parison to approaches that try to solve by more direct methods all the separate optimizations
embedded in the general equilibrium.

2. STATEMENT OF THE PROBLEM AND THE EULER EQUATION FIRST ORDER
CONDITIONS

Since in this course we are more interested in using these results than in proving them, we
present them backwards. That is, we begin by writing down the result we are aiming at, then
prove that it is part of a set of sufficient conditions for an optimum. The first-order conditions
we display are in fact also necessary conditions for an optimum under regularity conditions
that often apply in economic models, but we do not in this set of notes prove that. A more
complete presentation, that however gives less attention to infinite-horizon problems, is in
Kushner (1965b) and (Kushner, 1965a).
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Note that in this course you will be responsible for knowing how to use the conditions
displayed in these notes to analyze and solve economic models, not for reproducing proofs
of necessity or sufficiency.

We consider a problem of the form

max
C∞

0

E

[
∞

∑
t=0

β tUt
(
Ct
−∞,Zt

−∞
)
]

(1)

subject to

gt
(
Ct
−∞,Zt

−∞
)≤ 0, t = 0, ...,∞ , (2)

where we are using the notation Cn
m = {Cs,s = m, . . . ,n}.

We assume that the vector Z is an exogenous stochastic process, that is, that it cannot be
influenced by the vector of variables that we can choose, C. For a dynamic, stochastic setting,
the information structure is an essential aspect of any problem statement. Information is
revealed over time, and decisions made at a time t can depend only on the information that
has been revealed by time t. Here, we assume that what is known at t is Zt−∞, i.e. current
and past values of the exogenous variables in the model.1 The class of stochastic processes
C that have this property are said to be adapted to the information structure.

We can generate first order conditions for this problem by first writing down a Lagrangian
expression,

E

[
∞

∑
t=0

β tUt
(
Ct
−∞,Zt

−∞
)−

∞

∑
t=0

β tλtgt
(
Ct
−∞,Zt

−∞
)
]

, (3)

and then differentiating it to form the FOC’s:

β tEt

[
∞

∑
s=0

β s ∂Ut+s

∂C(t)
−

∞

∑
s=0

β s ∂gt+s

∂C(t)
λt+s

]
= 0, t = 0, ...,∞ (4)

Notice that:

• In contrast to the deterministic case, the Lagrangian in (3) and the FOC’s in (4)
involve expectation operators.

• The expectation operator in the FOC is Et , conditional expectation given the infor-
mation set available at t, the date of the choice variable vector C with respect to
which the FOC is taken.

• Because U and g each depend only on C’s dated t and earlier, the infinite sums in
(4) involve only U’s and g’s dated t and later.

1It may seem that it would be natural to include also past C’s in the information set. But it is our assumption
that this would be redundant. Of course a decision maker could make Ct depend on some “extraneous" random
element like a coin flip. Our assumption is simply that if this can occur, the coin flip is part of Zt−∞
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3. REVIEW OF FINITE-DIMENSIONAL, NON-STOCHASTIC KUHN-TUCKER
CONDITIONS

In finite-dimensional problems, first order conditions are necessary and sufficient condi-
tions for an optimum in a problem with concave objective functions and convex constraint
sets. The conditions in (4) are not as powerful, because this is an infinite-horizon problem.
First order conditions here, as in simpler problems, are applications of the:

Separating Hyperplane Theorem: If x̄ maximizes the continuous, concave function
V (·) over a convex constraint set Γ in some linear space, and if there is an (infeasible)
x∗ with V (x∗) >V (x̄), then there is a continuous linear function f (·) such that f (x) >
f (x̄) implies that x lies outside Γ and f (x) < f (x̄) implies V (x) < V (x̄).

In a finite-dimensional problem with x n×1, we can always write any such f as

f (x) =
n

∑
i=1

fi · xi (5)

where the fi are all real numbers.
If the problem has differentiable V and differentiable constraints of the form gi (x) ≤ 0,

then it will also be true that we can always pick

fi =
∂V
∂xi

(x̄) (6)

and nearly always write

f (x) = ∑
j

λ j
∂g j(x̄)

∂x
· x (7)

with λi ≥ 0, all i. The “nearly" is necessary because of what is known as the “constraint
qualification". It is possible that the first-order properties of the constraints near the optimum
do not give a good local characterization of the constraint set Γ. However, if we can find an
x vector and a set of non-negative λi’s that satisfy the constraints and (6) and (7), we have
found the separating hyperplane and hence the optimum. The standard Lagrange multiplier
equations are therefore sufficient conditions for an optimum, and they are “nearly" necessary:
We know there will always be a separating hyperplane, and usually we will be able to write
it in the form (7), but there are some knife-edge (i.e., rare) special cases in which this will
not be true. This justifies the common strategy of trying to solve such problems by looking
for solutions to (6) and (7). The sufficiency part of these results can be summarized as:

Kuhn-Tucker Theorem: 2 If
• V is a continuous, concave function on a finite-dimensional linear space,
• V is differentiable at x̄,
• gi, i = 1, . . . ,k are convex functions, each differentiable at x̄,

2This version of the Kuhn-Tucker theorem is not the most general possible, even for finite-dimensional
spaces.
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• there is a set of non-negative numbers λi, i = 1, . . . ,k such that

∂V (x̄)
∂x

= ∑
i

λi
∂gi (x̄)

∂x
, and

• gi (x̄)≤ 0 , λigi(x̄) = 0 , i = 1, . . . ,k ,
then x̄ maximizes V over the set of x’s satisfying gi (x)≤ 0, i = 1, . . . ,k.

4. COMPLICATIONS FROM AN INFINITE HORIZON

But in an infinite dimensional space it may not be true that we can write every continuous
linear function as an infinite sum analogous to (5), and the potentially infinite sums in (7) and
in (5) with f defined by (6) might not converge. These complications provide additional rea-
sons that there can be models in which the Lagrange multiplier equations are not necessary
conditions for an optimum, but more importantly they mean that they are no longer sufficient
conditions, even for problems with concave objective functions and convex constraint sets.
It is to handle these problems that we impose on infinite horizon problems what are called
transversality conditions. To apply the Lagrange multiplier idea to our current problem, in-
terpret V as given by the maximand in (1), x̄ as being C̄, the optimal C sequence, and x as
being a generic C sequence. In our stochastic problem, (5)-(7) become

E




∞

∑
t=0

t

∑
s=0

β t
∂Ut

(
C̄t

0,Z
t
0

)

∂Cs
·Cs


 = f (C∞

0 ) = E




∞

∑
t=0

β tλt

t

∑
s=0

∂gt

(
C̄t

0,Z
t
0

)

∂Cs
·Cs


 (8)

In order to get from (8) what are given as FOC’s in (4) above, we interchange the order
of summation in the expressions on the left and right sides of (8), then equate coefficients of
correspondingly subscripted C’s. The version of (8) with orders of summation interchanged
is

E




∞

∑
s=0

∞

∑
t=s

β t
∂Ut

(
C̄t

0,Z
t
0

)

∂Cs
·Cs


 = E




∞

∑
s=0

∞

∑
t=s

β tλt

∂gt

(
C̄t

0,Z
t
0

)

∂Cs
·Cs


 , (9)

from which it is easy to see that (4) follows, if we equate the coefficients on Cs terms on
the two sides of the equation. But to justify these manipulations, we must be careful about
issues of convergence. Dealing with convergence of these sums is checking transversality.

Note that simply “equating coefficients" on the left and right of (9) might seem to imply
(4) either without the “Et" operator or with an unsubscripted “E" operator. To understand
why the Et appears, remember that Ct is a random variable, a rule for choosing a numerical
value for Ct as a function of information available at t. Its “coefficient" in (9) is therefore
the sum of all the terms that multiply it, over both dates and possible states of the world
given information at t. It is the sum over states consistent with information available at t that
results in the Et operator in the FOC’s. The need for the Et is explained more precisely in
footnote 3 below, during the formal argument for sufficiency.
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5. SUFFICIENT CONDITIONS FOR THE FINITE LAG, STOCHASTIC, INFINITE HORIZON
CASE

In most economic models, there are only finitely many lags as arguments to g and U ,
which makes many of the infinite sums in (8) and (9) become finite. In fact most commonly
U has no lags in its arguments. To get versions of transversality that are closer to what is
commonly discussed in economic models and allow us to prove results, we now specialize
to the case where Ut = U (Ct ,Ct−1,Zt) and gt = g(Ct ,Ct−1,Zt). This allows us to write a
version of the Kuhn-Tucker theorem for infinite-dimensional spaces as:

Infinite-Dimensional Kuhn-Tucker: Suppose

(i) V
(
C∞−∞,Z∞−∞

)
= liminf

T→∞
E0

[
T
∑

t=0
β tU (Ct ,Ct−1,Zt)

]
;

(ii) U is concave and each element of g(Ct ,Ct−1) is convex in Ct and Ct−1 for each
Zt , and all integer t ≥ 0;

(iii) there is a sequence of random variables C̄∞
0 such that each C̄t is a function

only of information available at t, V (C̄∞
−∞,Z∞−∞) is finite with the partial sums

defining it on the right hand side of (5) converging to a limit, and, for each
t ≥ 0, g(Ct ,Ct−1,Zt)≤ 0;

(iv) U and g are both differentiable in Ct and Ct−1 for each Zt and the derivatives
have finite expectation;

(v) There is a sequence of non-negative random vectors λ ∞
0 , with each λt in the

corresponding information set at t, and satisfying λtg
(
C̄t ,C̄t−1,Zt

)
= 0 with

probability one for all t;
(vi)

∂U
(
C̄t ,C̄t−1,Zt

)

∂Ct
+βEt

[
∂U

(
C̄t+1,C̄t ,Zt+1

)

∂Ct

]

= λt
∂g

(
C̄t ,C̄t−1,Zt

)

∂Ct
+βEt

[
λt+1

∂g
(
C̄t+1,C̄t ,Zt

)

∂Ct

]
(10)

for all t (i.e., the Euler equations hold);
(vii) (transversality) for every feasible C sequence Ĉ

∞
0 , either V (Ĉ∞

0 ) < V (C̄∞
0 ) or

lim sup
t→∞

β tE

[(
∂U

(
C̄t ,C̄t−1,Zt

)

∂Ct
−λt

∂g
(
C̄t ,C̄t−1,Zt

)

∂Ct

)
· (Ĉt −C̄t

)
]
≤ 0 (11)

Then C̄∞
0 maximizes V subject to g(Ct ,Ct−1,Zt) ≤ 0 for all t ≥ 0 and to the given

non-random value of C1.
Proof: Suppose Ĉ

∞
0 is a feasible sequence of consumption choice rules that achieves

a higher value of V than does C̄∞
0 , despite C̄∞

0 ’s satisfying the conditions of the
theorem. We simplify notation from this point on by using Ut for U

(
C̄t ,C̄t−1,Zt

)
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and using gt for g(C̄t ,C̄t−1,Zt)) . By differentiability and by concavity of U and
convexity of g, we know that for each t

D1Ut ·
(
Ĉt −C̄t

)
+D2Ut ·

(
Ĉt−1−C̄t−1

)≥U
(
Ĉt ,Ĉt−1,Zt

)−Ut (12)

and similarly

D1gt ·
(
Ĉt −C̄t

)
+D2gt ·

(
Ĉt−1−C̄t−1

)≤ g
(
Ĉt ,Ĉt−1,Zt

)−gt (13)

Using (12), the definition of V , and our working hypothesis that Ĉ gives a higher
value of V than does C̄ , we conclude that

lim
T→∞

E

[
T

∑
t=0

β t · (D1Ut ·
(
Ĉt −C̄t

)
+D2Ut ·

(
Ĉt−1−C̄t−1

))
]

> 0 (14)

where, because C−1 is given exogenously, Ĉ−1 − C̄−1 = 0 for any feasible Ĉ se-
quence.

The law of iterated expectations allows us to rewrite (14) as

lim
T→∞

E

[
T

∑
t=0

β t · (D1Ut ·
(
Ĉt −C̄t

)
+Et−1D2Ut ·

(
Ĉt−1−C̄t−1

))
]

=

lim
T→∞

E

[
T−1

∑
t=0

{
β t · (D1Ut +Et [D2Ut+1]) · (Ĉt −C̄t)

}
+β T D1UT · (ĈT −C̄T )

]

> 0 . (15)

Then the Euler equations as given in (vi) assure us that (15) equates term by term,
except for a leftover term on the end, to the expected sum of the gradients of g,
weighted by the the λ sequence.3 In particular, (15) is exactly

lim
T→∞





E
[

T
∑

t=0
β tλt ·

(
D1gt ·

(
Ĉt −C̄t

)
+D2gt ·

(
Ĉt−1−C̄t−1

))]

+E
[
β T · (D1UT −λT D1gT ) · (Ĉt −C̄t

)]



 (16)

Since the Ĉ sequence is by hypothesis feasible, since λt ≥ 0, and since λtgt = 0
with probability one,

λt ·
(
g
(
Ĉt ,Ĉt−1,Zt

)−gt
)≤ 0 .

The first expectation within curly brackets in (16) is therefore less than or equal to
zero for every T , by convexity of g. Thus the first term has a lim sup less than
or equal to zero. The non-positivity of the lim sup of the second term in the curly

3Note that it is in this last step that we use the fact that the FOC with respect to Ct has “Et" in front of it.
If we had only an “E" in front of it, we would not be able to apply the law of iterated expectations here. The
argument we are making would go through if the Euler equations were written without expectations, since these
much stronger conditions would imply the Euler equations with Et in front. But of course weaker sufficient
conditions are more useful than stronger ones.
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brackets is exactly what we assumed in our transversality condition (11). This com-
pletes the proof by contradiction: while (14) has to exceed zero if Ĉ improves on
C̄ , the conditions of the theorem guarantee that it is equal to (16), which has to be
non-positive. ¤

Necessity of Transversality: While there are necessity results for transversality con-
ditions in some contexts, it appears difficult to obtain one for the setup here. When
we specialize to the case of dynamic programming, we will get necessary condi-
tions.

Note that the transversality condition (11) is not in quite the usual form. The usual form
would simply assert

β tE

[
λt

∂g
(
C̄t ,C̄t−1,Zt

)

∂Ct
·C̄t

]
→

t→∞
0 (17)

Often in economic models the U terms in the true transversality condition as given in (11)
drop out or converge to zero automatically. (17) then guarantees transversality at one partic-
ular point, Ĉ

∞
0 = 0 which, though it is feasible in most economic models, need not always be

feasible. The conventional transversality condition is also too strong in that it requires actual
convergence, rather than only that the lim inf be non-negative. It is too weak in that it checks
only one point in the feasible set.

This means that there are models in which, if we replaced our condition (11) by (17), there
would be C sequences that satisfy all the conditions of the modified theorem that are not in
fact optima. A leading example of such a model is the linear-quadratic permanent income
model with a borrowing constraint replacing the usual bound on the rate of growth of wealth.
The standard linear decision rule is not optimal in such a case, but it satisfies the standard
transversality condition (17), while failing our condition (11).

There are also models in which there is an optimum, satisfying the Euler equations, but the
standard transversality condition does not hold at the optimum. An example is the original
Ramsey growth model, without discounting. This example is explained in (Barro and Sala-
I-Martin, 1995, p.507-8).4
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