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I. Introduction

It is by now well understood how to solve linear stochastic rational expectations

models. Nonlinear stochastic models complex enough to be economically interesting

are in contrast generally not solvable except “numerically”, meaning that they can

only be solved by iterative, inherently approximate, methods. Optimal decision rules

and pricing functions in macroeconomic models often turn out to be nearly linear in

the neighborhood of steady state, so one can hope that by approximating the model

locally with a linear model, one can get a good idea of the model’s behavior with

much less computational difficulty than is encountered in a direct attack on solving

the nonlinear model.

There are pitfalls in linearization, however, even when the model is smoothly dif-

ferentiable and optimal decision rules are close to linear. One is that some apparently

reasonable procedures to approximate a nonlinear model by a linear system turn out

not to produce even locally accurate solutions. That is, the slopes of decision rules

and pricing functions in the neighborhood of the steady state are not matched by the
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solutions. It is relatively easy, though, to describe methods that are in fact guaranteed

to produce locally accurate solutions.

A second pitfall is that comparisons of welfare across different solutions, corre-

sponding to, say, different policies or market structures, often require second-order

accuracy in the approximation of the social welfare function. There are conditions

that guarantee that a first-order-accurate linear solution to the model, directly eval-

uated under the welfare function or a second-order Taylor expansion of it, produces a

second-order-accurate measure of social welfare. But these conditions are extremely

restrictive and complicated, so that simple intuitive characterizations of them easily

lead to mistakes.

Most, perhaps all, of the insights of this paper are previously known, indeed fre-

quently rediscovered. Judd (1998) covers many of them in his discussion of per-

turbation methods. Woodford (2002) has a careful discussion of the difficulties in

applying linearized solutions to welfare analysis and provides good examples of the

care and restrictive assumptions needed to sidestep the difficulties. Kim and Kim

(2003) display a simple example, used below, of incorrect welfare conclusions from

a first-order-accurate linearization and have useful suggestions for avoiding incorrect

conclusions.

II. Linearizing correctly

To linearize correctly, express the model’s solution as the solution to a set of equa-

tions. If the equations have a non-singular Jacobian at the point about which one

wants to linearize, a locally accurate solution can be found by solving the linear

system that results from a Taylor expansion of the equations.

III. Examples: Linearization pitfalls

This prescription seems simple, but it is not satisfied by some apparently reason-

able procedures. For example, in a constrained optimization problem the prescription

requires forming the system consisting of the first order conditions and the constraints

and linearizing it. This is not the same thing as taking a second-order Taylor expan-

sion of the objective function and a linear expansion of the constraints and solving

the resulting linear-quadratic problem.

Example: A substitute LQ model: Suppose we want to solve

max
x,y

e−
1
2
(x2+y2) (1)
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s.t.

(x− 2− ε)2 + (y − 2− ξ)2 ≤ 1 . (2)

The nonlinear equations defining a solution are the constraint (2) and the

FOC’s

−xe−
1
2
(x2+y2) = (2x− 4− 2ε)λ (3)

−ye−
1
2
(x2+y2) = (2y − 4− 2ξ)λ . (4)

We can eliminate λ by taking the ratio of the two FOC’s to arrive at

x

y
=

2x− 4− 2ε

2y − 4− 2ξ
⇒ x

y
=

2− ε
2− ξ

. (5)

It is easy to understand the nature of the exact solution geometrically. Our

objective function has circles centered at 0 for level curves, and the constraint

is that the solution must lie on or inside a circle of radius 1 centered at

(2 + ε, 2 + ξ). The tangency of the constraint circle with a level curve always

occurs on the line connecting the center of the constraint circle with the origin

— this is exactly (5). We can see, then, that increasing ε, which increases

the x-coordinate of the constraint circle center, will increase x by more than

it increases y. It moves the solution farther from the origin, but also puts it

on a ray from the origin with smaller slope (treating x as measured along the

horizontal axis). The linear expansion of the equation system formed by (2)

and (5), which gives a locally accurate answer, accordingly implies

dx = .82ε+ .18ξ (6)

dy = .18ε+ .82ξ , (7)

which fits our geometric description of the nature of the solution.

If we replace the objective function by a quadratic approximation to it, the

level curves will still be circles centered at the origin, so there is no distortion

in the problem from this source. But linearizing the constraint produces just

dx+ dy = ε+ ξ . (8)

Obviously no matter how ξ and ε move about, this constraint remains a

straight line with slope −1. Therefore its tangencies with level curves of

the objective function all fall on the 45 degree line through the origin. The

solution of this problem will imply that both ε and ξ have equal effects on

dx and dy, which is far from being correct. Figure 1 displays the geometry,

showing the optimum attained for ξ = ε = 0, the new optimum when ξ = 0,

ε = .2, and the two constraint sets and two rays through the origin. Note that
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Figure 1. Geometry of error for the incorrect LQ solution

in this figure the linearized solution is so close to the true solution that the

difference is not visible to the eye, while the incorrect LQ solution is visibly

different.

It may seem odd that the correct linearization gives the right answer, despite the

fact that it is a linear system that, like the incorrect LQ approximation discussed

above, includes the linearized constraint (8). The difference is that the correct lin-

earization involves, in the linearized FOC, second-order properties of the constraint.

However, as we will see below, the fact that the correct linearization still uses the

linearized constraint equation can create problems if we try to evaluate welfare prop-

erties of the solution to a stochastic model, because for this we usually need better

than first-order accuracy in the solution.

IV. Conditions for accurate welfare evaluation with linearized

models

Suppose we have a model solution in hand that gives us equations x = h(ε) defining

x as a function of ε. We would like to evaluate an objective function E[U(x, ε)],

perhaps because h represents one policy or market structure that we would like to

compare to others. We are interested in whether we can get locally accurate results

for small ε by replacing h with its first-order Taylor expansion about ε = 0.



LINEARIZED STOCHASTIC MODELS 5

The second-order Taylor expansion of U about ε = 0 is

U +
(
D1U Dεh+D2U

)
ε+

1

2
ε′Dεh

′D11U Dεhε+

†︷ ︸︸ ︷
1

2
ε′D1U Dεεh ε

′+

ε′D21U Dεhε+
1

2
ε′D22U ε . (9)

Notice first that the first-order terms in the expansion will vanish when we take

expectations, so that welfare comparisons must either be determined by the 0’th

order term — meaning that they can be done with local accuracy by considering

differences in deterministic solutions alone — or else they will depend on second or

higher order terms in the expansion of U .

Next, note that the term singled out with the overbrace and marked † depends

on Dεεh. Thus knowing an accurate first-order expansion of h is not enough, for

second-order accuracy, unless D1U(x̄, 0) = 0. There is of course one leading example

of a case in which this would be true: that in which x = h(0) is the solution to

the equations D1U(x, 0) = 0, which is the FOC of an unconstrained maximization of

U(x, 0). Since many economic models can be formulated as maximization problems,

this special case can be useful in practice.

However, economic models, if they are maximization problems at all, are most

commonly constrained maximization problems. The † term does not drop out for the

solution to constrained maximization problems. Why not, one might well ask, since

constrained maximization problems can generally in principle be transformed into

unconstrained problems by solving the constraints to produce a new, unconstrained

problem with fewer variables. The answer is that the second-order properties of

the constraint matter for the second-order expansion of U in ways not captured by

the first-order solution. If the constraints are solved, they become embedded in the

objective function and all their second-order properties are used. If the linearized

solution for a longer list of variables is used, some of the second-order properties of

the constraints are lost.

Note that it is nonetheless accurate to linearize the full set of FOC’s and constraints,

including in the system all the linearized constraints and all the Lagrange multipliers.

Solving this system does yield a first-order accurate solution for all variables. The

inaccuracy arises if this linearized solution for all variables is substituted into U in

evaluating welfare, or if, equivalently, the linearized form of the constraints is used

to reduce the number of variables before substitution into U . To obtain accurate

welfare evaluations, one must solve the original nonlinear form of the constraints, or
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a second-order approximation to them, to reduce the variable count before evaluating

U .1

An example of this type of pitfall has been provided by Kim and Kim (2003).

They consider the problem, which they interpret as arising from a simple model of

international risk sharing,

max
c1,c2
{c1 + c2} (10)

s.t.

ec1 + ec2 = ey1 + ey2 . (11)

The FOC’s for this problem2 are

1 = λec1 (12)

1 = λec2 (13)

which lead to the intuitively obvious solution

ec1 = ec2 =
ey1 + ey2

2
. (14)

The linearized version of the constraint and FOC’s, expanded about y1 = y2 = c1 =

c2 = 0, is

dc1 + dc2 = y1 + y2 (15)

dλ+ dc1 = 0 (16)

dλ+ dc2 = 0 . (17)

which leads to dc1 = dc2 = (y1 + y2)/2.

Thus so long as E[y1] = E[y2] = 0, the linearized solution implies that expected

welfare is zero, and independent of the variance of y1 and y2. But if we take a

1The idea of using the linearized form of the model to solve it, but then simulating it or otherwise
evaluating expected welfare using the original nonlinear constraints, has been suggested and called
called “partial linearization” by Evans and Marshall (2004), though they do not justify it as giving
a second order approximation to welfare. Indeed they apply it in a model of term structure, where
the fact that the solution for the variables themselves is still only first-order accurate, and thus
certainty-equivalent, may be a serious problem.

2In this form, the objective function is not concave, or even quasi-concave, for 0 < γ < 1. However,
the problem is a transformation of one written in terms of Ci = eci that does have concave objective
function and convex constraint for any γ > 0, so we can be confident that the FOC’s define an
optimum.
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second-order expansion of the welfare function using the true solution (14), we arrive

at

y1 + y2 +
(y1 − y2)

2

4
. (18)

Clearly then welfare does in fact depend — positively — on the variance of y1 and

y2.
3

The solution we suggested above, solving the constraint to eliminate one of the

variables, works here. If we use the linearized solution dc1 = (y1 + y2)/2 for c1, then

substitution into the exact constraint (11) produces

dc2 = log(ey1 + ey2 − e(y1+y2)/2) , (19)

which has the second-order Taylor expansion

dc2 =
y1 + y2

2
+

(y1 − y2)
2

4
. (20)

It is then clear that the second order expansion of the objective function c1 + c2 is

exactly the true expansion given in (18).

Note that this procedure has not resulted in a second-order accurate solution for

the individual variables c1 and c2. It has only produced a first-order accurate solu-

tion which, substituted into the welfare function, produces a second-order accurate

approximation to welfare.

V. Integral Constraints

The problems we have discussed to this point, though we have applied the expecta-

tion operator to their welfare functions, are based on deterministic equation systems:

each exogenous ε value produces a solution for x which can be found by solving a

set of nonlinear equations for a real vector x, given the real vector ε, one ε, x pair at

a time. More common in economics are problems in which some constraints involve

expectations, so that they can only be evaluated if the entire mapping from the space

of ε’s to the space of x’s is known. Such problems can also be handled by linearization

methods, but they raise some new issues.

Perhaps most importantly, in these problems, because the constraints and FOC’s

do not simply form a nonlinear equation system in real variables, the constraints

cannot be solved to convert the problem to unconstrained form. To take the simplest

possible example, consider the problem

max
x

E[−1
2
(x− 1− ε)2] (21)

3The fact that increased variance increases welfare comes from the fact that the expectation of
the right-hand-side of the constraint, E[ey1 + ey2 ], is increasing in the variance of y1 and y2.
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subject to

E[ex] ≤ 1 . (22)

The first order condition for the problem is

−x+ ε+ 1 = λE[ex] , (23)

where it is important that λ is a constant, not varying with ε. Assuming the constraint

is binding and using (22) in (23) gives us

E[e1+ε−λ] = 1 . (24)

A second order expansion of this equation, or an assumption that ε is normally

distributed, gives us

λ
.
= 1 +

σ2

2
(25)

and therefore the conclusion

x
.
= ε− σ2

2
. (26)

This exact (for the Gaussian ε case) or second order solution illustrates an impor-

tant general property of solutions to models with integral constraints. The first-order

solution (here simply x = ε) differs from the second-order solution (here (26)) not

just in a “second order” term involving cross products of ε’s (which actually does

not occur at all here), but in the “0’th-order” term, the constant. This can lead to

some semantic confusion over what is meant by a “first-order accurate” solution. The

natural definition, though, looks for accuracy as we shrink, together, both the size of

the particular ε for which we solve in (22) and (23) and the spread of the distribution

of the ε over which we integrate in taking the expectations. Thus the term in σ2

in (26) is of second-order, and the first-order solution, dx = ε, is indeed first-order

accurate.

However, as usual, first-order accurate solutions do not provide second-order accu-

rate welfare assessments, and thus are likely often not to be useful at all for welfare

assessment. Here the second-order solution tells us that expected utility is approxi-

mately −1
2
(1 + σ2/2), while the first-order solution tells us that expected welfare is

the same as for the deterministic ε ≡ 0 case.

Unlike the case without integral constraints, however, this model does not provide

us a straightforward way to make a first-order solution second-order accurate. We

cannot solve the constraint to reduce the number of variables, because the constraint

is not an ordinary equation, but a functional equation.

To justify use in welfare comparisons of linear approximations to solutions of sys-

tems involving expectational constraints, we have to assume that the constraints
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themselves are of small importance. For example, in our current example we could

replace the constraint E[ex] ≤ 1 with E[ex] ≤ e1−γ, with γ itself assumed to be first-

order small. Since at γ = 0 the constraint becomes non-binding, assuming γ small

makes λ nearly zero and makes inserting the first-order solution into the objective

(21) produce a second-order accurate approximation to it. Proceeding this way ob-

viously evades mathematical difficulties at a potentially serious substantive cost. For

example, Woodford (2002) in taking this approach is led at one point to impose the

assumption that the economy he studies is near the satiation point in real balances

(which requires either deflation at near the real interest rate or interest payments

on cash and high-powered money at near the real rate of interest) or a negligible

role for real balances in the economy. As Woodford acknowledges, these assumptions

imply important limitations on the range of applicability of the results obtained by

the first-order methods.

VI. Dynamic models

Most macroeconomic models are dynamic, so that they do not fit directly into

any of the simple setups we have discussed so far. To cast them into the form of a

standard equation-solving problem, we give the equation system this form:

F (xt, xt−1, εt) = 0 (27)

Et(G(xt+1, xt, ξt) = 0 . (28)

Assuming the model has a deterministic steady-state solution x̄, i.e. that

F (x̄, x̄, 0) = 0 (29)

G(x̄, x̄, 0) = 0 , (30)

we can look for a linearization around this steady state for small ε and ξ. A solution

will have the form xt = h(xt−1, εt, σ
2). We look for a second-order solution by substi-

tuting h(xt, εt+1, σ
2) for xt+1 in (28) and h(xt−1, εt, σ

2) for xt in (27). If we expand

the resulting system in a second-order Taylor expansion in x, ε, and σ, we obtain a

system in which we can hope to determine the first and second order coefficients in

the expansion of h by equating to zero the first and second order coefficients in the

expansion of (27) and (28).

An example of application to a simple growth model is in Judd (1998, section 13.7).

There is software available now that constructs second or higher order approximations

to DSGE models more or less automatically, and these methods have been applied,

for example in Schmitt-Grohé and Uribe (2002) and Schmitt-Grohé and Uribe (2001).

Software to do this is available online via the Dynare project, and there are several

other program packages for it online.
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