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1. EXAMPLE: LQPY

The ordinary LQ permanent income model has agents solving

max
{Cs,Ws}

E
[ ∞

∑
t=0

β t(Ct − 1
2C2

t )
]

subject to

Wt = R(Wt−1−Ct−1)+Yt (∗)

E[β .5tWt ] →
t→∞

0 . (∗∗)

The solution, for the simple case where Rβ = 1 and Yt is i.i.d. with mean Ȳ , is well known to
be

Ct = (1−β )Wt +βȲ .

2. A REASONABLE MODIFICATION OF LQPY

• Where does the limit on the growth rate of W in (∗∗) come from? We believe that
the agent should see constraints on making W large and negative (i.e., borrowing a
lot), but why the constraint on positive accumulation at a high rate?

• So replace (∗∗) by liminfE[R−tWt ]≥ 0, a standard form for a “no-Ponzi” condition.
Then the problem is no longer LQ, and the standard solution is not optimal, so long
as Var(Yt) > 0 and Yt ≥ 0 with probability one.

3. WHY IS THE STANDARD SOLUTION NOT OPTIMAL?

It implies
Wt = Wt−1 +Yt − Ȳ . (1)

So EtWt+1 = Wt , i.e. Wt is a martingale.
Theorem: A bounded martingale converges almost surely.
Since the changes in Wt always have the same nonzero variance, W does not converge.

Therefore, by the theorem, it is unbounded — both above and below. In particular, eventually
it will get above

W ∗ =
R

R−1
.
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Once Wt ≥ W ∗, we can set Ct ≡ 1, which delivers maximum possible (“satiation level”)
utility, forever, and we can be sure that no matter how bad our luck in drawing Yt values, we
can avoid violating Wt ≥ 0.

This has to be better than continuing with the standard solution, which would at this point
push C above 1. This deviation from the standard solution entails W increasing toward infinity
at the rate β−t , which is why with (∗∗) imposed we do find the standard solution to be optimal.

4. STANDARD TVC AND OUR MODIFIED LQPY PROBLEM

The Lagrange multiplier on the constraint in this problem is λt = 1−Ct , and the usual TVC
is

E0[β tλtWt ] = E0[β t(1−Ct)Wt ] →
t→∞

0 .

Since Wt is a random walk in this solution and has i.i.d. increments, its second moment is
O(t), as is (therefore) E0[CtWt ]. The conventional TVC is satisfied.

So this is a problem with concave objective function, and convex constraints. The “stan-
dard solution” satisfies all the Euler equations and the conventional TVC — but it is not in
fact an optimum. In a standard finite-dimensional problem, a concave objective function and
convex constraint sets imply that any solution to the FOC’s is an optimum. What’s wrong
here?

5. NOTATION: THE MOST GENERAL SETUP

• Our practice: things dated t are always “known" — i.e. available for use as ar-
guments of decision functions — at t or later. This convention differs from that in
much of the growth literature, and in the classic Blanchard-Kahn treatment of linear
RE models, but it saves much confusion. Also variables chosen at t are dated t.

• A stochastic optimization problem in general form:

max
C∞

0

E

[
∞

∑
t=0

β tUt
(
Ct
−∞,Zt

−∞
)
]

(2)

subject to

gt
(
Ct
−∞,Zt

−∞
)≤ 0, t = 0, ...,∞ , (3)

where we are using the notation Cn
m = {Cs,s = m, . . . ,n}.

6.

• An implicit constraint: {Ct} is adapted to {Zt}. Each Ct is not a vector of real
numbers, but instead a function mapping the information available at t, Zt−∞, into
vectors of real numbers.

• It is possible to eliminate the random variables and expectations from our discus-
sion by considering the simplified special case where at each t there are only finitely
many possible values of Zt−∞. Then the Ct decision function is just a long vector,
characterized by the list of values it takes at each possible value for Zt−∞; expecta-
tions are just weighted sums.
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7. LAGRANGIAN AND FOC’S

E

[
∞

∑
t=0

β tUt
(
Ct
−∞,Zt

−∞
) −

∞

∑
t=0

β tλtgt
(
Ct
−∞,Zt

−∞
)
]

, (4)

∂H
∂C(t)

=

β tEt

[
∞

∑
s=0

β s ∂Ut+s

∂C(t)
−

∞

∑
s=0

β s ∂gt+s

∂C(t)
λt+s

]
= 0,

t = 0, ...,∞ (5)

8. NECESSITY AND SUFFICIENCY?

Separating Hyperplane Theorem: If V (·) is a continuous, concave function over a
convex constraint set Γ in some linear space, and if there is an x∗ with V (x∗) >V (x̄),
then x̄ maximizes V over Γ if and only if there is a non-constant continuous linear
function f (·) such that f (x) > f (x̄) implies that x lies outside Γ and f (x) < f (x̄)
implies V (x) < V (x̄).

9.

In a finite-dimensional problem with x n×1, we can always write any such f as

f (x) =
n

∑
i=1

fi · xi (6)

where the fi are all real numbers. If the problem has differentiable V and differentiable
constraints of the form gi (x)≤ 0, then it will also be true that we can always pick

fi =
∂V
∂xi

(x̄) (7)

and nearly always write

f (x) = ∑
j

λ j
∂g j(x̄)

∂x
· x (8)

with λi ≥ 0, all i. The “nearly" is necessary because of what is known as the “constraint
qualification".

10.

Kuhn-Tucker Theorem (sufficiency): If
• V is a continuous, concave function on a finite-dimensional linear space,
• V is differentiable at x̄,
• gi, i = 1, . . . ,k are convex functions, each differentiable at x̄,
• there is a set of non-negative numbers λi, i = 1, . . . ,k such that

∂V (x̄)
∂x

= ∑
i

λi
∂g(x̄)

∂x
, and

• gi (x̄)≤ 0 and λigi(x̄) = 0, i = 1, . . . ,k ,
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then x̄ maximizes V over the set of x’s satisfying gi (x)≤ 0, i = 1, . . . ,k.

11. THE FLY IN THE OINTMENT: CONVERGENCE OF INFINITE SUMS

Interpret V as given by the maximand in (2), x̄ as being C̄, the optimal C sequence, and x
as being a generic C sequence. In our stochastic problem, (6)-(8) become

E




∞

∑
t=0

t

∑
s=0

β t
∂Ut

(
C̄t

0,Z
t
0

)

∂Cs
·Cs


 = f (C∞

0 )

= E




∞

∑
t=0

β tλt

t

∑
s=0

∂gt

(
C̄t

0,Z
t
0

)

∂Cs
·Cs


 (9)

12.

The version of (9) with orders of summation interchanged (?!)is

E




∞

∑
s=0

∞

∑
t=s

β t
∂Ut

(
C̄t

0,Z
t
0

)

∂Cs
·Cs




= E




∞

∑
s=0

∞

∑
t=s

β tλt

∂gt

(
C̄t

0,Z
t
0

)

∂Cs
·Cs


 , (10)

Using the law of iterated expectations, together with the fact that Cs is a function of informa-
tion known at s, we can expand this expression to

E




∞

∑
s=0

Es




∞

∑
t=s

β t
∂Ut

(
C̄t

0,Z
t
0

)

∂Cs


 ·Cs




= E




∞

∑
s=0

Es




∞

∑
t=s

β tλt

∂gt

(
C̄t

0,Z
t
0

)

∂Cs


 ·Cs


 . (11)

Since Cs can be any function of Zs
0 for which the objective function is defined, it is clear that

we cannot guarantee this equality for all candidate Cs sequences unless the coefficients on Cs
on both sides of the equation are equal with probability one. Imposing this condition gives
us the Euler equations.

13. SOME SIMPLIFICATIONS

• Drop t subscripts on U and g.
• Give U and g each only finitely many arguments.
• I.e., Ut = U (Ct ,Ct−1,Zt) and gt = g(Ct ,Ct−1,Zt)
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14. INFINITE-DIMENSIONAL STOCHASTIC KUHN-TUCKER

Infinite-Dimensional Kuhn-Tucker: Suppose

(i) V
(
C∞−∞,Z∞−∞

)
= liminf

T→∞
E0

[
T
∑

t=0
β tU (Ct ,Ct−1,Zt)

]
;

(ii) U is concave and each element of g(Ct ,Ct−1,Zt) is convex in Ct and Ct−1 for
each Zt , and all integer t ≥ 0;

(iii) there is a sequence of random variables C̄∞
0 such that each C̄t is a function

only of information available at t, V (C̄∞
−∞,Z∞−∞) is finite with the partial sums

defining it on the right hand side of (i) converging to a limit, and, for each t ≥ 0,
g(C̄t ,C̄t−1,Zt)≤ 0 with probability one;

(iv) U and g are both differentiable in Ct and Ct−1 for each Zt and the derivatives
have finite expectation;

15.

(v) There is a sequence of non-negative random vectors λ ∞
0 , with each λt in the

corresponding information set at t, and satisfying λtg
(
C̄t ,C̄t−1,Zt

)
= 0 with

probability one for all t;
(vi)

∂U
(
C̄t ,C̄t−1,Zt

)

∂Ct
+βEt

[
∂U

(
C̄t+1,C̄t ,Zt+1

)

∂Ct

]

= λt
∂g

(
C̄t ,C̄t−1,Zt

)

∂Ct
+βEt

[
λt+1

∂g
(
C̄t+1,C̄t ,Zt

)

∂Ct

]
(12)

for all t (i.e., the Euler equations hold);

16.

(vii) (transversality) for every feasible C sequence Ĉ
∞
0 , either

V
(
C̄∞
−∞,Z∞

−∞
)

> V
(
Ĉ

∞
−∞,Z∞

−∞
)

,

or

lim sup
t→∞

β t

E

[(
∂U

(
C̄t ,C̄t−1,Zt

)

∂Ct
−λt

∂g
(
C̄t ,C̄t−1,Zt

)

∂Ct

)

·(Ĉt −C̄t
)]≤ 0 . (13)

Then C̄∞
0 maximizes V subject to g(Ct ,Ct−1,Zt) ≤ 0 for all t ≥ 0 and to the given

non-random value of C−1.
Necessity: The Euler equations are always necessary conditions. There are regularity

conditions that make transversality part of the necessary conditions, but specifying
these regularity conditions gets us into deeper mathematical waters, so we will not
take this up.
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17. SIMPLIFICATION TO THE “STANDARD" TVC

Note that for those elements of the vector of TVC’s in (13) that correspond to derivatives
with respect elements of the Ct vector that do not appear with a lag in U or g, the Et terms
in the Euler equations (12) drop out, so that the Euler equations guarantee that for these
elements of C, the TVC’s hold trivially — the expression that is supposed to go to zero in
limsup actually is identically zero. For elements of the Ct vector that enter only with a lag,
the corresponding TVC components are identically zero. Thus there is only one non-trivial
TVC per “state" variable, if we label as a state any variable that enters both unlagged and
with a lag.

18. RESTRICTIONS

Commonly available additional simplifications:
(a) The subvector of C that enters both currently and with a lag, which we will call “S",

for “state vector", can be “solved for":

St ≤ h(St−1, It ,Jt−1Zt) ,

where It ,Jt is notation for the part of the C vector other than S.
(b) Paths with E0[liminfβ tλtSt < 0] are not feasible while paths in which limβ tλtSt = 0

are feasible;
(c) St does not enter the U function at all.

19. THE SIMPLIFIED CONDITION

Under these conditions our general TVC (13) greatly simplifies, to become

lim
t→∞

E0
[
β tλt S̄t = 0

]
.

In other words we can get rid of the limsup operator, replacing it with an ordinary lim, we get
rid of the term depending on U , and we avoid having to consider the alternative sequences Ĉ.

Commonly, all the λt’s are non-negative, while we have a lower bound on St . Then the
“dot-product” form of the TVC is equivalent to the requirement that each E0[β tλit S̄it ] sepa-
rately converges to zero, so we can check the transversality condition one variable at a time.

20. APPLICATION TO THE LINEAR-QUADRATIC PERMANENT INCOME EXAMPLE

In the conventional solution, we get from the FOC’s

Ct = EtCt+1 .

For the conventional solution to be correct, the constraint must be interpreted as an equality,
so that to get it into our Kuhn-Tucker framework we must treat as two inequality constraints
(both linear, so both convex despite the sign change):

µ: Wt ≤ R(Wt−1−Ct−1 +Yt

ν : −Wt ≤−
(
R(Wt−1−Ct−1)+Yt

)
.

There are then two positive Lagrange multipliers, µ and ν .
If we ignore the growth constraint (∗∗), the solution to the problem is just to set Ct ≡ 1,

even though apparently Euler equations and TVC are satisfied by the conventional solution.
The condition (a) above is not satisfied, however, because instead of having Wt on the left,
one of the constraints has −Wt on the left, so the constraints are not “standard". In particular,
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when the constraint that has −Wt on the left is binding, Wt is a “bad", not a “good". It,
together with the requirement in the conventional solution that W not grow too fast, is what
forces us to consume beyond satiation.

In the version of the model with the no-Ponzi condition replacing the growth constraint,
the problem is again non-standard, because still one of the constraints has a −Wt on the
right-hand side.

To see that the full TVC is violated in the conventional solution if there is no W -growth
constraint, observe that the TVC is

limsup
t→∞

β tE
[
(1−C̄t)(Ĉt −C̄t)− (µt −νt)(Ŵt −W̄t)

]≤ 0 .

The Euler equations for C and W allow us to conclude that µt −νt = 1−Ct . In the standard
solution, 1−C̄t is a random walk, so it becomes positive infinitely often and negative infinitely
often. It is feasible, as we have seen, to choose consumption equal to 1 in every period
that the standard solution would make it exceed one, and to leave consumption equal to its
standard-solution value at all other times. This yields higher utility than C̄t and it implies that
eventually Ŵt = O(Rt). With our assumption that Rβ = 1, we see then that there are feasible
W ’s for which the limsup in the W component of the TVC is in fact positive. Also, since this
Ĉt makes Ĉt −C̄t negative at exactly those dates when 1−C̄t is negative, the C component of
the TVC must also have a non-negative limsup.


