
Eco 504.2 Spring 2004 Chris Sims

EXERCISE ON RANDOM LAGRANGE MULTIPLIERS AND TVC

(1) Consider the following variant of the standard LQ permanent income model, in
which we use a different form of the accumulation constraint from that used in
class, and we relax the condition Rβ = 1:

max
{Ct}

E0

[ ∞∑
t=0

βt(Ct − 1
2
C2

t )

]
(1)

subject to Ct + At ≤ RAt−1 + Yt (2)

At ≥ 0 (3)

Yt > 0 with probability one , EYt < ∞, Yt i.i.d. (4)

(a) Show that the objective function in this modified model is concave.
It is concave in each Ct separately, because the second deriv-
ative w.r.t. Ct is −βt < 0. Therefore for every Ĉt and C̄t

sequence for which the sum in the definition of the objective
function is convergent, we will have

lim
T→∞

T∑
t=0

βtU(αC̄t + (1− α)Ĉt) ≥ lim
T→∞

α

T∑
t=0

U(C̄t) + (1− α)
T∑

t=0

U(Ĉt) ,

which simply states that the objective function is concave on its
domain.

(b) Find the Euler equations and transversality conditions.
Euler equations:

∂Ct : 1− Ct = λt

∂At : λt = βREtλt+1

Transversality: For any feasible Ât process that might improve
on A∗,

lim sup E[(1− C∗
t )(Ât − A∗

t )β
t] ≤ 0 ,

where the ∗’s indicate the candidate optimal choices and the ˆ
indicates a potential alternative choice sequence.

(c) Find the optimal decision rule, setting Ct as a function of At−1 and Yt, for
the “standard” form of the model, in which we replace (3) by E[βt/2At] → 0
and make (1) an equality, instead of an inequality.

From the FOC’s we get

Ct = 1− βR + βREt[Ct+1] .
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This can be solved recursively to result in

EtCt+s = (βR)−s + 1− (βR)−s .

Substituting this expression into the budget constraint and solv-
ing that forward produces, under the assumptions that

Et[R
−sAt+s] −−−→

s→∞
0

and R2β > 1,

At =
Ct − 1

R2β − 1
+

1− Ȳ

R− 1
. (∗)

Note that if R2β < 1, the problem has a trivial solution: set
Ct ≡ 1. That policy makes At explode upward or downward,
according to the budget constraint, at the rate Rt. But since in
this case R < β−1/2, the E[Atβ

t/2] → 0 constraint is not vio-
lated. So restricting attention to the case R2β ≥ 1 is justified.
When R2β > 1, The condition Et[R

−sAt+s] → 0, needed for the
argument above, is guaranteed by the constraint E[Atβ

t/2] → 0.
The case R2β = 1 allows no solution. The Euler equations in
that case imply

Ct = 1− β1/2 + β1/2EtCt+1 ,

which can be solved forward (assuming Ct does not explode
faster than β−t/2, which it can’t if utility is to remain bounded)
to yield

Ct = 1 .

But if Ct ≡ 1, the budget constraint implies that A grows at the
rate β−1/2, which contradicts the constraint. So no solution to
the Euler equations satisfies the constraints. What this means
is that given any rule for choosing a C path that satisfies the
constraints, I can (because it will violate the Euler equations)
improve on it. The agent can get arbitrarily close to Ct ≡
1 while satisfying the constraint, but cannot actually achieve
Ct ≡ 1.
In (∗) we have a relation between At and Ct, but since these are
both choice variables at t, this is not yet an explicit solution.
For that, we have to substitute (∗) into the budget constraint
and solve for Ct, which results in

Ct = (R− (Rβ)−1)At−1 + (R2β)−1 − (1− Ȳ )(1− (R2β)−1)

R− 1
+ (1− (R2β)−1)Yt .

(d) Show that your solution to the standard problem does not solve the prob-
lem in this exercise.
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With some more algebra, we can solve to get At as a function
of lagged A and current Y :

At = (Rβ)−1At−1 + (R2β)−1Yt − (R2β)−1

(
1 +

(Ȳ − 1)(R2β − 1)

R− 1

)
. (†)

If Rβ > 1 this describes a starionary process fluctuating around
a mean of Ā = (1− Ȳ )/(R − 1). Note that this means that at
the deterministic steady state, interest on A exactly covers the
gap between satiation consumption and the mean Ȳ of income.
Indeed consumption is also a stationary process, fluctuating
around a mean of 1. Since C goes above 1 in this solution, it
is of course possible here as in the examples discussed in class
to improve on this solution by simply setting Ct = 1 whenever
the standard solution suggests consuming above the satiation
level. This will produce rapid growth in A, but in the problem
we started with there was no constraint on rapid A growth.
If Rβ < 1, equation (†) is explosive. A will then become ei-
ther arbitrarily large or arbitrarily small (though of course still
growing at a rate (Rβ)−1 < β−1/2). But in our original problem
A < 0 is ruled out, and if A explodes upward we can again im-
prove on the solution by setting C = 1 whenever the standard
solution would suggest C > 1.

(2) Consider the simple “new Keynesian” model

aggregate demand : yt = βEtyt+1 − θ(rt − Etπt+1) + νt (5)

Phillips curve : πt = δEtπt+1 + γyt + εt (6)

Taylor rule : rt = α1πt + α2yt + α3rt−1+ζt . (7)

There are no constant terms because all variables are interpreted as deviations
from a steady state. Use a computer — gensys.m will work fine — to complete
the following tasks.
(a) Check existence and uniqueness for the model with β = .95, θ = .5, δ = .8,

γ = .2; α1 = .11, α2 = .01, α3 = .9.
(b) For these same parameter values, compute and plot impulse responses of

r, π, and y to the three shocks ε, ν, ζ, which are all interpreted as i.i.d.
(c) Determine what range of parameter values for α1 and α2 are consistent with

existence and uniqueness. Does the “Taylor Principle”, that α1/(1 − α3)
should exceed 1, provide a necessary and sufficient condition?

Note that, because ε and ν enter with a t subscript earlier than the date on the
latest variables to appear in their equations, if you use gensys they have to be
treated as variables in the system, appearing with a lag, and dummy equations
have to be added to the system that set them equal to i.i.d. shocks.

Answer:
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The aggregate demand

yt = βEtyt+1 − θ(rt − Etπt+1) + vt

can be rewritten as

yt = βyt+1 + β (Etyt+1 − yt+1)− θrt + θπt+1 + θ (Etπt+1 − πt+1) + vt

= βyt+1 − θrt + θπt+1 + vt + βηy
t+1 + θηπ

t+1.

where ηy
t+1 and ηπ

t+1 are expectation errors of the variables in the super script.
Analogously we can rewrite the Phillips curve as

πt = δπt+1 + γyt + εt + δηπ
t+1

and the Taylor rule as

rt+1 = α1πt+1 + α2yt+1 + α3rt + ςt+1

Therefore, defining Yt = [yt, πt, rt, vt, εt]
′ , the system can be rewritten as

Γ0Yt+1 = Γ1Yt + Πηt+1 + Ψεt+1

where η is the vector of expectation errors, ε = [ṽ, ε̃, ς] with each of its component
i.i.d., and

Γ0 =




β θ 0 0 0
0 δ 0 0 0
−α2 −α1 1 0 0

0 0 0 1 0
0 0 0 0 1




Γ1 =




1 0 θ −1 0
−γ 1 0 0 −1
0 0 α3 0 0
0 0 0 0 0
0 0 0 0 0




Π =




−β −θ
0 −δ
0 0
0 0
0 0




Ψ =




0 0 0
0 0 0
0 0 1
1 0 0
0 1 0




.

are the input matrices for gensys.m.
(a) The output of gensys.m, given the assumed parameters values, reads
eu =
1
1
establishing both existence and uniqueness of the solution.
(b) Using the impact and G1 matrices produced by gensys.m we can compute the
impulse response functions in Figure 1, 2 and 3 (details are reported in the codes in
the appendix).
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(c) To determine numerically what range of parameter values for α1 and α2 are con-
sistent with existence and uniqueness we can make gensys.m evaluate the system over
a grid of points for α1 and α2. In Figure 4, the shaded areas correspond to values
of α1 and α2 such that a solution to the system exists and it’s unique. The vertical
line in the graph represent the minimum value α1 that satisfies the ”Taylor principle”
α1/(1 − α3) > 1. The graphs shows that the Taylor principle is neither sufficient nor
necessary to deliver existence and uniqueness of the solution. Nevertheless, if we re-
strict our attention to the case α2 ≥ 0, the Taylor principle is a sufficient, but not
necessary, condition for uniqueness and existence.
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Appendix

All the results presented have been produced by the following matlab code:
beta=.95; theta=.5; delta=.8; gamma=.2; alpha1=.11; alpha2=.01 ; alpha3=.9;
pi=[-beta -theta; 0 -delta; 0 0; 0 0; 0 0]
psi=[0 0 0; 0 0 0; 0 0 1; 1 0 0;0 1 0]
g0=[beta theta 0 0 0; 0 delta 0 0 0; -alpha2 -alpha1 1 0 0; 0 0 0 1 0; 0 0 0 0 1]
g1=[1 0 theta -1 0; -gamma 1 0 0 -1; 0 0 alpha3 0 0; 0 0 0 0 0; 0 0 0 0 0]
c = [ 0; 0; 0; 0; 0];
[G1,C,impact,fmat,fwt,ywt,gev,eu]=gensys(g0,g1,c,psi,pi)

% The next lines generate the plots of the impulse-response functions.

col = impact;
for j=1:10

resp(:,:,j)=col; % Stores the i-th response of the variables to the shocks.
col=G1*col; % Multiplies by G1 to give the next step response to the

% shocks.
end
resp1y(:,1)=squeeze(resp(1,1,:)); % "squeeze" eliminates the singleton dimensions

% of resp(:,:,:). It returns a matrix with the first ten
% responses of the 1st variable to the 1st shock

resp2y(:,1)=squeeze(resp(1,2,:));
resp3y(:,1)=squeeze(resp(1,3,:));
resp1pi(:,1)=squeeze(resp(2,1,:));
resp2pi(:,1)=squeeze(resp(2,2,:));
resp3pi(:,1)=squeeze(resp(2,3,:));
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resp1r(:,1)=squeeze(resp(3,1,:));
resp2r(:,1)=squeeze(resp(3,2,:));
resp3r(:,1)=squeeze(resp(3,3,:));
figure(1)
subplot(3,1,1)
plot(1:10,resp1y(:,1))
title(’Response of y to \nu shock’); grid on
subplot(3,1,2)
plot(1:10,resp2y(:,1));
title(’Response of y to \epsilon shock’); grid on
subplot(3,1,3)
plot(1:10,resp3y(:,1));
title(’Response of y to \varsigma shock’); grid on
pause
figure(2)
subplot(3,1,1)
plot(1:10,resp1pi(:,1))
title(’Response of \pi to \nu shock’); grid on
subplot(3,1,2)
plot(1:10,resp2pi(:,1));
title(’Response of \pi to \epsilon shock’); grid on
subplot(3,1,3)
plot(1:10,resp3pi(:,1));
title(’Response of \pi to \varsigma shock’); grid on
pause
figure(3)
subplot(3,1,1)
plot(1:10,resp1r(:,1))
title(’Response of r to \nu shock’); grid on
subplot(3,1,2)
plot(1:10,resp2r(:,1));
title(’Response of r to \epsilon shock’); grid on
subplot(3,1,3)
plot(1:10,resp3r(:,1));
title(’Response of r to \varsigma shock’); grid on
pause

% The next lines search for the range of parameters alpha1 and alpha2 that
% are consistent with existence and uniqueness

a1 = [0:.01:2]; % these lines creates a grid of values for alpha1 and alpha2
a2 = [-2:.01:2];
count = 0
for i = 1:max(size(a1))

for j = 1:max(size(a2))
alpha1 = a1(i); alpha2=a2(j);

g0=[beta theta 0 0 0; 0 delta 0 0 0; -alpha2 -alpha1 1 0 0; 0 0 0 1 0; 0 0 0
0 1];

[G1,C,impact,fmat,fwt,ywt,gev,eu]=gensys(g0,g1,c,psi,pi);
flag = eu(1)+eu(2);
if flag ==2

count = count +1;
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a1eu(count) =alpha1;
a2eu(count) =alpha2;
taylor(count) = (1-alpha3)+0.0001;

end
end

end
figure(4)
plot(a1eu, a2eu,taylor,a2eu); xlabel(’\alpha 1’); ylabel(’\alpha 2’); grid on


