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1. EXAMPLE : LQPY

The ordinary LQ permanent income model has agents solving

max
{Cs,Ws}

E
[ ∞

∑
t=0

β t(Ct − 1
2C2

t )
]

subject to

Wt = R(Wt−1−Ct−1)+Yt (∗)
E[β .5tWt ] →

t→∞
0. (∗∗)

The solution, for the simple case whereRβ = 1 andYt is i.i.d. with meanȲ, is well known to
be

Ct = (1−β )Wt +βȲ .

2. A REASONABLE MODIFICATION OFLQPY

• Where does the limit on the growth rate ofW in (∗∗) come from? We believe that
the agent should see constraints on makingW large and negative (i.e., borrowing a
lot), but why the constraint onpositiveaccumulation at a high rate?

• So replace (∗∗) by liminf E[R−tWt ]≥ 0, a standard form for a “no-Ponzi” condition.
Then the problem is no longer LQ, and the standard solution is not optimal, so long
asVar(Yt) > 0 andYt ≥ 0 with probability one.

3. WHY IS THE STANDARD SOLUTION NOT OPTIMAL?

It implies
Wt = Wt−1 +Yt −Ȳ . (1)

SoEtWt+1 = Wt , i.e.Wt is a martingale.
Theorem: A bounded martingale converges almost surely.
Since the changes inWt always have the same nonzero variance,W does not converge.

Therefore, by the theorem, it is unbounded — both above and below. In particular, eventually
it will get above

W∗ =
R

R−1
.
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OnceWt ≥ W∗, we can setCt ≡ 1, which delivers maximum possible (“satiation level”)
utility, forever, and we can be sure that no matter how bad our luck in drawingYt values, we
can avoid violatingWt ≥ 0.

This has to be better than continuing with the standard solution, which would at this point
pushC above 1. This deviation from the standard solution entailsW increasing toward infinity
at the rateβ−t , which is why with (∗∗) imposed we do find the standard solution to be optimal.

4. STANDARD TVC AND OUR MODIFIED LQPY PROBLEM

The Lagrange multiplier on the constraint in this problem isλt = 1−Ct , and the usual TVC
is

E0[β tλtWt ] = E0[β t(1−Ct)Wt ] →
t→∞

0.

SinceWt is a random walk in this solution and has i.i.d. increments, its second moment is
O(t), as is (therefore)E0[CtWt ]. The conventional TVC is satisfied.

So this is a problem with concave objective function, and convex constraints. The “stan-
dard solution” satisfies all the Euler equations and the conventional TVC — but it is not in
fact an optimum. In a standard finite-dimensional problem, a concave objective function and
convex constraint sets imply that any solution to the FOC’s is an optimum. What’s wrong
here?

5. NOTATION: THE MOST GENERAL SETUP

• Our practice: things datedt are always “known" — i.e. available for use as ar-
guments of decision functions — att or later. This convention differs from that in
much of the growth literature, and in the classic Blanchard-Kahn treatment of linear
RE models, but it saves much confusion. Also variables chosen att are datedt.

• A stochastic optimization problem in general form:

max
C∞

0

E

[
∞

∑
t=0

β tUt
(
Ct
−∞,Zt

−∞
)
]

(2)

subject to
gt

(
Ct
−∞,Zt

−∞
)≤ 0, t = 0, ...,∞ , (3)

where we are using the notationCn
m = {Cs,s= m, . . . ,n}.

6.

• An implicit constraint: {Ct} is adapted to {Zt}. EachCt is not a vector of real
numbers, but instead a function mapping the information available att, Zt−∞, into
vectors of real numbers.

• It is possible to eliminate the random variables and expectations from our discus-
sion by considering the simplified special case where at eacht there are only finitely
many possible values ofZt−∞. Then theCt decision function is just a long vector,
characterized by the list of values it takes at each possible value forZt−∞; expecta-
tions are just weighted sums.
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7. LAGRANGIAN AND FOC’S

E

[
∞

∑
t=0

β tUt
(
Ct
−∞,Zt

−∞
)

−
∞

∑
t=0

β tλtgt
(
Ct
−∞,Zt

−∞
)
]

, (4)

∂H
∂C(t)

=

β tEt

[
∞

∑
s=0

β s∂Ut+s

∂C(t)
−

∞

∑
s=0

β s∂gt+s

∂C(t)
λt+s

]
= 0,

t = 0, ...,∞ (5)

8. NECESSITY ANDSUFFICIENCY?

Separating Hyperplane Theorem: If V(·) is a continuous, concave function over a
convex constraint setΓ in some linear space, and if there is anx∗ with V(x∗) >V(x̄),
thenx̄ maximizesV overΓ if and only if there is a non-constant continuous linear
function f (·) such thatf (x) > f (x̄) implies thatx lies outsideΓ and f (x) < f (x̄)
impliesV(x) < V(x̄).

9.

In a finite-dimensional problem withx n×1, we can always write any suchf as

f (x) =
n

∑
i=1

fi ·xi (6)

where the fi are all real numbers. If the problem has differentiableV and differentiable
constraints of the formgi (x)≤ 0, then it will also be true that we can always pick

fi =
∂V
∂xi

(x̄) (7)

and nearly always write

f (x) = ∑
j

λ j
∂g j(x̄)

∂x
·x (8)

with λi ≥ 0, all i. The “nearly" is necessary because of what is known as the “constraint
qualification".
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10.

Kuhn-Tucker Theorem (sufficiency): If
• V is a continuous, concave function on a finite-dimensional linear space,
• V is differentiable at̄x,
• gi , i = 1, . . . ,k are convex functions, each differentiable atx̄,
• there is a set of non-negative numbersλi , i = 1, . . . ,k such that

∂V (x̄)
∂x

= ∑
i

λi
∂g(x̄)

∂x
, and

• gi (x̄)≤ 0 andλigi(x̄) = 0, i = 1, . . . ,k ,
thenx̄ maximizesV over the set ofx’s satisfyinggi (x)≤ 0, i = 1, . . . ,k.

11. THE FLY IN THE OINTMENT: CONVERGENCE OF INFINITE SUMS

InterpretV as given by the maximand in(2), x̄ as beingC̄, the optimalC sequence, andx
as being a genericC sequence. In our stochastic problem,(6)-(8) become

E

[
∞

∑
t=0

t

∑
s=0

β t ∂Ut
(
Ct

0,Z
t
0

)

∂Cs
·Cs

]
= f (C∞

0 )

= E




∞

∑
t=0

β tλt

t

∑
s=0

∂gt

(
C̄t

0,Z
t
0

)

∂Cs
·Cs


 (9)

12.

The version of(9) with orders of summation interchanged (?!)is

E




∞

∑
s=0

∞

∑
t=s

β t
∂Ut

(
C̄t

0,Z
t
0

)

∂Cs
·Cs




= E




∞

∑
s=0

∞

∑
t=s

β tλt

∂gt

(
C̄t

0,Z
t
0

)

∂Cs
·Cs


 , (10)

Using the law of iterated expectations, together with the fact thatCs is a function of informa-
tion known ats, we can expand this expression to

E




∞

∑
s=0

Es




∞

∑
t=s

β t
∂Ut

(
C̄t

0,Z
t
0

)

∂Cs


 ·Cs




= E




∞

∑
s=0

Es




∞

∑
t=s

β tλt

∂gt

(
C̄t

0,Z
t
0

)

∂Cs


 ·Cs


 . (11)
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SinceCs can be any function ofZs
0 for which the objective function is defined, it is clear that

we cannot guarantee this equality for all candidateCs sequences unless the coefficients onCs
on both sides of the equation are equal with probability one. Imposing this condition gives
us the Euler equations.

13. SOME SIMPLIFICATIONS

• Drop t subscripts onU andg.
• GiveU andg each only finitely many arguments.
• I.e.,Ut = U (Ct ,Ct−1,Zt) andgt = g(Ct ,Ct−1,Zt)

14. INFINITE-DIMENSIONAL STOCHASTICKUHN-TUCKER

Infinite-Dimensional Kuhn-Tucker: Suppose

(i) V
(
C∞−∞,Z∞−∞

)
= liminf

T→∞
E0

[
T
∑

t=0
β tU (Ct ,Ct−1,Zt)

]
;

(ii) U is concave and each element ofg(Ct ,Ct−1,Zt) is convex inCt andCt−1 for
eachZt , and all integert ≥ 0;

(iii) there is a sequence of random variablesC̄∞
0 such that each̄Ct is a function

only of information available att, V(C̄∞
−∞,Z∞−∞) is finite with the partial sums

defining it on the right hand side of (i) converging to a limit, and, for eacht ≥ 0,
g(C̄t ,C̄t−1,Zt)≤ 0 with probability one;

(iv) U andg are both differentiable inCt andCt−1 for eachZt and the derivatives
have finite expectation;

15.

(v) There is a sequence of non-negative random vectorsλ ∞
0 , with eachλt in the

corresponding information set att, and satisfyingλtg
(
C̄t ,C̄t−1,Zt

)
= 0 with

probability one for allt;
(vi)

∂U
(
C̄t ,C̄t−1,Zt

)

∂Ct
+βEt

[
∂U

(
C̄t+1,C̄t ,Zt+1

)

∂Ct

]

= λt
∂g

(
C̄t ,C̄t−1,Zt

)

∂Ct
+βEt

[
λt+1

∂g
(
C̄t+1,C̄t ,Zt

)

∂Ct

]
(12)

for all t (i.e., theEuler equationshold);

16.

(vii) (transversality) for every feasibleC sequencêC
∞
0 , either

V
(
C̄∞
−∞,Z∞

−∞
)

> V
(
Ĉ

∞
−∞,Z∞

−∞
)

,
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or

lim sup
t→∞

β t

E

[(
∂U

(
C̄t ,C̄t−1,Zt

)

∂Ct
−λt

∂g
(
C̄t ,C̄t−1,Zt

)

∂Ct

)

·(Ĉt −C̄t
)]≤ 0. (13)

ThenC̄∞
0 maximizesV subject tog(Ct ,Ct−1,Zt) ≤ 0 for all t ≥ 0 and to the given

non-random value ofC−1.
Necessity:The Euler equations are always necessary conditions. There are regularity

conditions that make transversality part of the necessary conditions, but specifying
these regularity conditions gets us into deeper mathematical waters, so we will not
take this up.

17. SIMPLIFICATION TO THE “ STANDARD" TVC

Note that for those elements of the vector of TVC’s in(13) that correspond to derivatives
with respect elements of theCt vector that do not appear with a lag inU or g, theEt terms
in the Euler equations (12) drop out, so that the Euler equations guarantee that for these
elements ofC, the TVC’s hold trivially — the expression that is supposed to go to zero in
limsupactually is identically zero. For elements of theCt vector that enteronly with a lag,
the corresponding TVC components are identically zero. Thus there is only one non-trivial
TVC per “state" variable, if we label as a state any variable that enters both unlagged and
with a lag.

18. RESTRICTIONS

Commonly available additional simplifications:

(a) The subvector ofC that enters both currently and with a lag, which we will call “S",
for “state vector", can be “solved for":

St ≤ h(St−1, It ,Jt−1Zt) ,

whereIt ,Jt is notation for the part of theC vector other thanS.
(b) Paths withE0[liminf β tλtSt < 0] are not feasible while paths in whichlim β tλtSt = 0

are feasible;
(c) St does not enter theU function at all.

19. THE SIMPLIFIED CONDITION

Under these conditions our general TVC(13) greatly simplifies, to become

lim
t→∞

E0
[
β tλtS̄t = 0

]
.

In other words we can get rid of thelimsupoperator, replacing it with an ordinarylim, we get
rid of the term depending onU , and we avoid having to consider the alternative sequencesĈ.
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Commonly, all theλt ’s are non-negative, while we have a lower bound onSt . Then the
“dot-product” form of the TVC is equivalent to the requirement that eachE0[β tλit S̄it ] sepa-
rately converges to zero, so we can check the transversality condition one variable at a time.

20. APPLICATION TO THEL INEAR-QUADRATIC PERMANENT INCOME EXAMPLE

In the conventional solution, we get from the FOC’s

Ct = EtCt+1 .

For the conventional solution to be correct, the constraint must be interpreted as anequality,
so that to get it into our Kuhn-Tucker framework we must treat as two inequality constraints
(both linear, so both convex despite the sign change):

µ : Wt ≤ R(Wt−1−Ct−1 +Yt

ν : −Wt ≤−
(
R(Wt−1−Ct−1)+Yt

)
.

There are then two positive Lagrange multipliers,µ andν .
If we ignore the growth constraint(∗∗), the solution to the problem is just to setCt ≡ 1,

even though apparently Euler equations and TVC are satisfied by the conventional solution.
The condition(a) above is not satisfied, however, because instead of havingWt on the left,
one of the constraints has−Wt on the left, so the constraints are not “standard". In particular,
when the constraint that has−Wt on the left is binding,Wt is a “bad", not a “good". It,
together with the requirement in the conventional solution thatW not grow too fast, is what
forces us to consume beyond satiation.

In the version of the model with the no-Ponzi condition replacing the growth constraint,
the problem is again non-standard, because still one of the constraints has a−Wt on the
right-hand side.

To see that the full TVC is violated in the conventional solution if there is noW-growth
constraint, observe that the TVC is

limsup
t→∞

β tE
[
(1−C̄t)(Ĉt −C̄t)− (µt −νt)(Ŵt −W̄t)

]≤ 0.

The Euler equations forC andW allow us to conclude thatµt −νt = 1−Ct . In the standard
solution,1−C̄t is a random walk, so it becomes positive infinitely often and negative infinitely
often. It is feasible, as we have seen, to choose consumption equal to 1 in every period
that the standard solution would make it exceed one, and to leave consumption equal to its
standard-solution value at all other times. This yields higher utility thanC̄t and it implies that
eventuallyŴt = O(Rt). With our assumption thatRβ = 1, we see then that there are feasible
W’s for which thelimsupin theW component of the TVC is in fact positive. Also, since this
Ĉt makesĈt −C̄t negative at exactly those dates when1−C̄t is negative, theC component of
the TVC must also have a non-negativelimsup.


