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1. EXAMPLE: LQPY

The ordinary LQ permanent income model has agents solving

max E Liﬁt G- 3

{Cs W}
subject to

W =RW-1-C-1) + % (%)
E[B"W] — 0. (%)

The solution, for the simple case whé®g = 1 andY; is i.i.d. with meary, is well known to
be

Ce = (1-B)W +BY.
2. A REASONABLE MODIFICATION OFLQPY

e Where does the limit on the growth rateWfin (x¥x) come from? We believe that
the agent should see constraints on maklhtarge and negative (i.e., borrowing a
lot), but why the constraint opositiveaccumulation at a high rate?

e So replacexx) by liminf E[R'W] > 0, a standard form for a “no-Ponzi” condition.
Then the problem is no longer LQ, and the standard solution is not optimal, so long
asVar(Y;) > 0 andY; > O with probability one.

3. WHY IS THE STANDARD SOLUTION NOT OPTIMAL?

It implies _
W=W_1+¥%-Y. (1)
SoEW .1 =W, i.e.W is a martingale.
Theorem: A bounded martingale converges almost surely.
Since the changes W always have the same nonzero variandedoes not converge.
Therefore, by the theorem, it is unbounded — both above and below. In particular, eventually

it will get above
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OnceW > W*, we can setC; = 1, which delivers maximum possible (“satiation level”)
utility, forever, and we can be sure that no matter how bad our luck in drawwvaues, we
can avoid violating/y > 0.

This has to be better than continuing with the standard solution, which would at this point
pushC above 1. This deviation from the standard solution entdilacreasing toward infinity
atthe ratg3 !, which is why with &) imposed we do find the standard solution to be optimal.

4. STANDARD TVC AND OUR MODIFIED LQPY PROBLEM

The Lagrange multiplier on the constraint in this problemyis- 1—C;, and the usual TVC

is

Eo[B'AW] = Eo[B'(1—Ci)W] — 0.
SinceW is a random walk in this solution and has i.i.d. increments, its second moment is
O(t), as is (thereforelgy|CiW]. The conventional TVC is satisfied.

So this is a problem with concave objective function, and convex constraints. The “stan-
dard solution” satisfies all the Euler equations and the conventional TVC — but it is not in
fact an optimum. In a standard finite-dimensional problem, a concave objective function and
convex constraint sets imply that any solution to the FOC'’s is an optimum. What’s wrong
here?

5. NOTATION: THE MOST GENERAL SETUP

e Our practice: things datedare always “known" — i.e. available for use as ar-
guments of decision functions — tabr later. This convention differs from that in
much of the growth literature, and in the classic Blanchard-Kahn treatment of linear
RE models, but it saves much confusion. Also variables chosearatdated.

e A stochastic optimization problem in general form:

maxE S W (Cct,,Zt 2
ne LZ)B ¢ )] (2)
subject to

gt<Ct—oo;Zt—oo) Soatzoa'“?oo? (3)

where we are using the notati@j, = {Cs,s=m,...,n}.

6.

e An implicit constraint: {C} is adaptedto {Z}. EachC is not a vector of real
numbers, but instead a function mapping the information availaklgzit,,, into
vectors of real numbers.

e It is possible to eliminate the random variables and expectations from our discus-
sion by considering the simplified special case where atetate are only finitely
many possible values @ ,. Then theC; decision function is just a long vector,
characterized by the list of values it takes at each possible vali# fgrexpecta-
tions are just weighted sums.
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7. LAGRANGIAN AND FOC's

E|S pU c..Zt
[;B (CuZ)

B Mg (CLo, 2t )|, @
t;ﬁ 0 ( )] (4)

O0Uts

0
%BS gt+s)\t+s] =0,

B'E [Z}BS

8. NECESSITY AND SUFFICIENCY?

Separating Hyperplane Theorem:If V(-) is a continuous, concave function over a
convex constraint s€tin some linear space, and if there isdrwith V (x*) >V (x),
thenx maximizesV overT if and only if there is a non-constant continuous linear
function f(-) such thatf(x) > f(x) implies thatx lies outsidel" and f(x) < f(X)
impliesV (x) <V (x).

9.

In a finite-dimensional problem witkin x 1, we can always write any sudhas

= i fi - X (6)

where thef; are all real numbers. If the problem has differentiadl@end differentiable
constraints of the formg; (x) < O, then it will also be true that we can always pick

oV
fi= % (%) (7)
and nearly always write
dg;(x
f(x):ZAjng—p.x ®)
]

with A; > 0, all i. The “nearly" is necessary because of what is known as the “constraint
qualification”.
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10.

Kuhn-Tucker Theorem (sufficiency): If
e V is a continuous, concave function on a finite-dimensional linear space,
e V is differentiable ak,

e g, i =1,...,kare convex functions, each differentiablexat
e there is a set of non-negative numbays = 1,..., k such that
0V >6 99 >6
1™ 7.,

ZA

e g (X) <OandAigi(x) =0, i=1,...,k,
thenx maximizesV over the set ok’s satisfyingg; (x) <0, i =1,...,k.

11. THE FLY IN THE OINTMENT: CONVERGENCE OF INFINITE SUMS

InterpretV as given by the maximand (2), x as beingf, the optimalC sequence, anxl
as being a generi€ sequence. In our stochastic probldg);(8) become

DS TE

oU (CL,Z%) -
]:f(Co)

€ [imt ia 2 (Co2) cs] ©)

12.

The version of9) with orders of summation interchanged (?!)is

{Z)B o <C°’Zt> cs]

00 t t
o3 am e S of e

Using the law of iterated expectations, together with the factGhat a function of informa-
tion known ats, we can expand this expression to

i)
i)
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SinceCs can be any function off for which the objective function is defined, it is clear that
we cannot guarantee this equality for all candidateequences unless the coefficient€Ggn

on both sides of the equation are equal with probability one. Imposing this condition gives
us the Euler equations.

13. SOME SIMPLIFICATIONS

e Dropt subscripts otJ andg.
e GiveU andg each only finitely many arguments.
e le U =U(C,G-1,%) andg: = 9(C,Ci-1,%4)

14. INFINITE-DIMENSIONAL STOCHASTIC KUHN-TUCKER

Infinite-Dimensional Kuhn-Tucker: Suppose
T
ORY (C°,°OO,Z°200) = Iipinon { s B'U (Ct,Ct_l,Zt)};

(i) U is concave and each elementgdC;,C;_1,7Z;) is convex inC; andC;_1 for
eachz;, and all integet > 0; _ _

(iii) there is a sequence of random variab®s such that eaclt; is a function
only of information available at V (C”,,,Z%,,) is finite with the partial sums
defining it on the right hand side aj) Converging to a limit, and, for ea¢h> 0,
9(C,Ci-1,2Z:) < 0Owith probability one;

(iv) U andg are both differentiable i€ andC;_1 for eachZ; and the derivatives
have finite expectation;

15.

(v) There is a sequence of non-negative random vect§rswith each); in the

corresponding information set gtand satisfyingAtg(Ct,d,l,Zt) = 0 with
probability one for all;

(vi)
ou (d?dflazt) ouU <5t+176t7zt+1)
ac, + BE [ aC, ]
0 _a _* 7Z 0 o) ) _a
=N g(qd%t 12) + BE l)\t+1 g(C[:;étCt Zt)] (12)

forallt (i.e., theEuler equationshold);

16.

(vii) (transversality) for every feasibl&C sequencéf)0 , either

V(C%..2%) >V (€7, 2%,) ,
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or

lim supp!

t—o0

e (VGG 1Z) | 99(C.C1.2Z)
aCi ' oCi

(&-G)]<0. (13)

ThenC, maximizesV subject tog(C;,C;_1,Z;) < 0 for all t > 0 and to the given
non-random value a@_;.

Necessity: The Euler equations are always necessary conditions. There are regularity
conditions that make transversality part of the necessary conditions, but specifying
these regularity conditions gets us into deeper mathematical waters, so we will not
take this up.

17. SIMPLIFICATION TO THE “STANDARD" TVC

Note that for those elements of the vector of TVC'{13) that correspond to derivatives
with respect elements of th& vector that do not appear with a laglihor g, the E; terms
in the Euler equationsl@) drop out, so that the Euler equations guarantee that for these
elements ofC, the TVC'’s hold trivially — the expression that is supposed to go to zero in
limsup actually is identically zero. For elements of tGevector that enteonly with a lag,
the corresponding TVC components are identically zero. Thus there is only one non-trivial
TVC per “state” variable, if we label as a state any variable that enters both unlagged and
with a lag.

18. RESTRICTIONS

Commonly available additional simplifications:

(a) The subvector of that enters both currently and with a lag, which we will c&8l,"
for “state vector", can be “solved for":

S{ S h(S—l; Ita‘]t—lZ(> )

wherely, J is notation for the part of th€ vector other thais.

(b) Paths withEg[liminf B'A;S < 0] are not feasible while paths in whiéim BtA;§ =0
are feasible;

(c) S does not enter thid function at all.

19. THE SIMPLIFIED CONDITION
Under these conditions our general T3) greatly simplifies, to become
lim Eo [B'A§ =0] .

In other words we can get rid of thien supoperator, replacing it with an ordinaliyn, we get
rid of the term depending dd, and we avoid having to consider the alternative sequedces
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Commonly, all theA;’s are non-negative, while we have a lower boundSnThen the
“dot-product” form of the TVC is equivalent to the requirement that eBg|' Ay St] sepa-
rately converges to zero, so we can check the transversality condition one variable at a time.

20. APPLICATION TO THELINEAR-QUADRATIC PERMANENT INCOME EXAMPLE

In the conventional solution, we get from the FOC'’s

G =EGC1.
For the conventional solution to be correct, the constraint must be interpretecgaality,

so that to get it into our Kuhn-Tucker framework we must treat as two inequality constraints
(both linear, so both convex despite the sign change):

u: W <RW_1-G_1+Y

v: ~W < —(RW-1—-Ci—1)+Y).
There are then two positive Lagrange multipligesandv.

If we ignore the growth constrairfix), the solution to the problem is just to €gt= 1,
even though apparently Euler equations and TVC are satisfied by the conventional solution.
The condition(a) above is not satisfied, however, because instead of ha\firan the left,
one of the constraints has\ on the left, so the constraints are not “standard". In particular,
when the constraint that hasW on the left is bindingW is a “bad", not a “good”. It,
together with the requirement in the conventional solution Watot grow too fast, is what
forces us to consume beyond satiation.

In the version of the model with the no-Ponzi condition replacing the growth constraint,
the problem is again non-standard, because still one of the constraints-Hak @n the
right-hand side.

To see that the full TVC is violated in the conventional solution if there is\rrgrowth
constraint, observe that the TVC is

IirpﬁsogpﬁtE[u—c?)(ét —Ct) — (e — ) (W —W)] < 0.

The Euler equations fa€ andW allow us to conclude that; — vi = 1—C;. In the standard
solution,1—C; is arandom walk, so it becomes positive infinitely often and negative infinitely
often. It is feasible, as we have seen, to choose consumption equal to 1 in every period
that the standard solution would make it exceed one, and to leave consumption equal to its
standard-solution value at all other times. This yields higher utility @aand it implies that
eventuallyWyf = O(R'). With our assumption th&B = 1, we see then that there are feasible
W’s for which thelimsupin theW component of the TVC is in fact positive. Also, since this

G makesC; — C; negative at exactly those dates wHenC; is negative, th€ component of

the TVC must also have a non-negative sup.



