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EXERCISE: CONSUMPTION SMOOTHING

We discussed the nature of a solution to the simple linearized international borrowing
and lending model we considered in class, but didn’t actually lay out a solution. In
this problem, you will find the actual solution. Note that the 2002 version of the course
included a similar, but not identical exercise, for which an answer was posted on the
course web page. This year’s version involves a little more algebra, but should be easier
if you start from the old solution.

The model has agent i, i = 1, 2 solving

max
Ci,Bi

E

[ ∞∑
t=0

βt Ci(t)
1−γ

1− γ

]
(1)

subject to

Ci(t) + Bi(t) = Rt−1Bi(t− 1) + Yi(t) (2)

Bi(t) ≥ −B̄ . (3)

We assume that the bonds are privately issued, so that B1(t) = −B2(t) is the market
clearing condition. Assume that Y1 and Y2 are independent of each other, both evolving
according to the same stochatic process, with mean Ȳ > 0 and satisfying

Yi(t) = ρ(Yi(t− 1)− Ȳ ) + Ȳ + εi(t) ,

where εi(t) is i.i.d. across both i and t and has mean zero.

(i) Linearize the model around a deterministic steady state in which B = 0, and
solve for C1, C2, R, and B1 as functions of the history of the exogenous processes
Yi.

The B1(t) = −B2(t) = Bt = 0 steady state produces C1(t) = C2(t) = Ȳ , Rt =

β−1. We will use the notation that for any variable X, X̂t = (dX1(t)+dX2(t))/2
and X̃t = (dX1(t) − dX2(t))/2, where the “d” indicates deviation from steady
state. The model’s two budget constraints of the form (2) then can be rewritten
as

Ĉt = Ŷt (A1)

C̃t + Bt = Rt−1Bt−1 + Ỹt . (A2)

The FOC’s for the i’th agent are, after elimination of the Lagrange multiplier,

Ci(t)
−γ = βRtEt[Ci(t + 1)−γ] . (A3)
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Linearizing (A2) and (A3) and changing to the new notation produces

C̃t + Bt = β−1Bt−1 + Ỹt (A4)

C̃t = EtC̃t+1 (A5)

EtĈt+1 = γβȲ dRt + Ĉt . (A6)

The solution for Ĉ is given directly by (A1). For C̃, we solve (A2) forward. To

do that, we use the fact that the process given for Yi(t) implies Et[Ŷt+1] = ρŶt

and equation (A5), arriving at

C̃t = (β−1 − 1)

(
Bt +

ρ

β−1 − ρ
Ỹt

)
. (A7)

For R we use (A1) in (A6) to obtain

dRt = (βγ)−1(ρ− 1)
Ŷt

Ȳ
. . (A8)

For B we use the results above in (A2) to obtain, after some algebra,

Bt −Bt−1 = Ỹt
1− ρ

β−1 − ρ
. (A9)

(ii) Check whether in your linearized solution B and C1 − C2 are martingales and
R is i.i.d., as was true in the 2002 ρ = 0 version of the exercise.

That C̃ is a martingale follows from the FOC (A5) . For B, we can see from

(A9) that it is not a martingale unless ρ = 0, because EtŶt+1 = ρŶt.
(iii) In lecture it was asserted that the solution gets closer to autarchy as ρ increases

toward one. Check whether that is true in your solution and explain how you
reach your conclusion.

Autarchy is the situation where there is no international borrowing and lend-
ing, so each agent just consumes its own endowment. From (A9), we can see
that as ρ → 1, the variation in B gets smaller and smaller for a given sequence
of Ỹt’s, so that in the limit B is a constant at its steady-state value of 0, and
we are at the autarchy solution.

It is important to note that this is not because the autarchy solution is getting
closer to the complete-markets/planner’s-optimum solution. As ρ → 1, the
unconditional variance of Ỹ goes to ∞, and in the ρ = 1 limit the incomes
of the two agents drift ever farther apart. So under autarchy the same thing
happens to C̃ as ρ → 1. But of course in the planner’s allocation with equal
weights, C̃t ≡ 0.


