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1. EXAMPLE: LQPY

The ordinary LQ permanent income model has agents solving

Le LTS

subject to
W =RW_1-C_1)+¥% (%)
E[B W] — 0. ()

The solution, for the simple case whé&8 = 1 andY; is i.i.d. with mearY, is well known to
be

C = (1-B)W +BY.
2. A REASONABLE MODIFICATION OFLQPY

e Where does the limit on the growth rate\afin come from? We believe that
the agent should see constraints on makihtarge and negative (i.e., borrowing a
lot), but why the constraint opositiveaccumulation at a high rate?

e So replace#) by liminf E[R"'W] > 0, a standard form for a “no-Ponzi” condition.
Then the problem is no longer LQ, and the standard solution is not optimal, so long
as VarY;) > 0 andY; > 0 with probability one.

3. WHY IS THE STANDARD SOLUTION NOT OPTIMAL?

It implies _
W=W_1+Y%-Y. (1)
SoEW .1 =W, i.e.W is a martingale.
Theorem: A bounded martingale converges almost surely.
Since the changes W always have the same nonzero variantdedoes not converge.
Therefore, by the theorem, it is unbounded — both above and below. In particular, eventually

it will get above
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OnceW > W*, we can setC; = 1, which delivers maximum possible (“satiation level”)
utility, forever, and we can be sure that no matter how bad our luck in drawwaues, we
can avoid violating/y > 0.

This has to be better than continuing with the standard solution, which would at this point
pushC above 1. This deviation from the standard solution entdilacreasing toward infinity
atthe ratg8 !, which is why with imposed we do find the standard solution to be optimal.

4. STANDARD TVC AND OUR MODIFIED LQPY PROBLEM

The Lagrange multiplier on the constraint in this problerfis- 1—C;, and the usual TVC

is

Eol8'AW] = Eo[B'(1—C)W] — 0.
SinceW is a random walk in this solution and has i.i.d. increments, its second moment is
O(t), as is (thereforefgp|CiW]. The conventional TVC is satisfied.

So this is a problem with concave objective function, and convex constraints. The “stan-
dard solution” satisfies all the Euler equations and the conventional TVC — but it is not in
fact an optimum. In a standard finite-dimensional problem, a concave objective function and
convex constraint sets imply that any solution to the FOC'’s is an optimum. What's wrong
here?

5. NOTATION: THE MOST GENERAL SETUP

e Our practice: things datedare always “known" — i.e. available for use as ar-
guments of decision functions — tabr later. This convention differs from that in
much of the growth literature, and in the classic Blanchard-Kahn treatment of linear
RE models, but it saves much confusion. Also variables chosearatdated.

e A stochastic optimization problem in general form:

maxE S W (Ct,,Zt 2
ne Lzofs (( )] ®)
subject to

gt<Ct—oant—oo) Soatzoa'“voo7 (3)

where we are using the notati@j, = {Cs,s=m,...,n}.

6.

e An implicit constraint: {C} is adaptedto {Z}. EachC is not a vector of real
numbers, but instead a function mapping the information availatilezit,,, into
vectors of real numbers.

e It is possible to eliminate the random variables and expectations from our discus-
sion by considering the simplified special case where atethate are only finitely
many possible values @ ,. Then theC; decision function is just a long vector,
characterized by the list of values it takes at each possible vali# fgrexpecta-
tions are just weighted sums.
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7. LAGRANGIAN AND FOC'’s
e The Lagrangian for this problem

E S "W (C .2t
S puc)
- 3 t)" thoovztfoo ) 4
goﬁ tg’[( )] (4)

e The FOC's

Ut s

B'E; [Z),BS Z),BsagHS t+s] =0,

t=0,..,0 (5)

8. NECESSITY AND SUFFICIENCY?

Separating Hyperplane Theorem:If V(-) is a continuous, concave function over a
convex constraint s€tin some linear space, and if there isémwith V (x*) >V (x),
thenx maximizesV overT if and only if there is a continuous linear functidn-)
such thatf (x) > f(x) implies thatx lies outsidd™ and f (x) < f(X) impliesV (x) <
V(X).

9.

In a finite-dimensional problem witkin x 1, we can always write any sudhas

X) = ii fi - X (6)

where thef; are all real numbers. If the problem has differentiadl@and differentiable
constraints of the formg; (x) < 0, then it will also be true that we can always pick

oV
fi= EM (%) (7)
and nearly always write
ag;j (X
H@zZMJ%Qx ®)
]

with A4; > 0, alli. The “nearly" is necessary because of what is known as the “constraint
qualification”.
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10.

Kuhn-Tucker Theorem (sufficiency): If
¢ V is a continuous, concave function on a finite-dimensional linear space,
¢ V is differentiable ak,

e g, i =1,...,kare convex functions, each differentiablexat
e there is a set of non-negative numbéis = 1, ...,k such that
8V >6 99 ( >6

DX

e g (X) <O0andAgi(x) =0, i=1,...,k,
thenx maximizesV over the set ok’s satisfyingg; (x) <0, i =1,...,k.

11. THE FLY IN THE OINTMENT: CONVERGENCE OF INFINITE SUMS

InterpretV as given by the maximand if](2},as beingff, the optimalC sequence, anxl
as being a generic€ sequence. In our stochastic problen, (6)-(8) become

DS TE

U (CL, Z%) N
t ]:f(Co)

e [iﬁ A ia dCL) cs] ©)

12.

The version of[(P) with orders of summation interchanged (?!)is

{itiﬂtwt (62) cs]

c agt (60,25)
=E H———2-Cs|, (10
L IZSB A Jc Cs| , (10)

Using the law of iterated expectations, together with the factGhat a function of informa-
tion known ats, we can expand this expression to

o [ U (Cozb)
i L%ES {Zf T] CS]

i)
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SinceCs can be any function of for which the objective function is defined, it is clear that
we cannot guarantee this equality for all candidaeequences unless the coefficientGgn

on both sides of the equation are equal with probability one. Imposing this condition gives
us the Euler equations.

13. SOME SIMPLIFICATIONS

e Dropt subscripts otJ andg.
e GiveU andg each only finitely many arguments.
e le U =U(C,G 1,Z) andg = 9(C,C-1,24)

14. INFINITE-DIMENSIONAL STOCHASTIC KUHN-TUCKER

Infinite-Dimensional Kuhn-Tucker: Suppose
T
() V (C%w, 2%) = liminfEo [ > B'U (ct,ct_l,zo} ;
—00 t=0

(i) U is concave and each elementgdC;,C;_1,7;) is convex inC; andC;_1 for
eachz;, and all integet > O; _ _

(iii) there is a sequence of random variab®s such that eaclt; is a function
only of information available at V (C”,,,Z%,,) is finite with the partial sums
defining it on the right hand side ¢f (i) converging to a limit, and, for eael®,
9(C,CGi-1,2Z:) < 0 with probability one;

(iv) U andg are both differentiable i€ andC;_1 for eachZ; and the derivatives
have finite expectation;

15.

(v) There is a sequence of non-negative random vedt§rswith each; in the

corresponding information set gtand satisfyingltg(ct,d,l,zt) = 0 with
probability one for all;

(vi)
U (d)dflazt) U <5t+176t7zt+1)
3C + BE [ 9C,
99(Ct,Ci—1,Z 99 (Cr1,G, Z
=X g(C[ag 1.2) + BE; [MH g(qgétq t)] (12)

forallt (i.e., theEuler equationshold);

16.

(vii) (transversality) for every feasibl&C sequencéﬁ,0 , either

V(C%,.2%) <V (€7, 2%,) ,
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or

lim supp!

t—oo

| (Y (CC1z) ltag(c_[,ci_l,z()
G aC

(G-q)] <0. (13)

ThenCB0 maximizesV subject tog(C,Ci—1,Z;) <0 for allt > 0 and to the given
non-random value df_.

Necessity: The Euler equations are always necessary conditions. There are regularity
conditions that make transversality part of the necessary conditions, but specifying
these regularity conditions gets us into deeper mathematical waters, so we will not
take this up.

17. SMPLIFICATION TO THE “STANDARD" TVC

Note that for those elements of the vector of TVC’s[in|(13) that correspond to derivatives
with respect elements of th& vector that do not appear with a laglihor g, the E; terms
in the Euler equations (12) drop out, so that the Euler equations guarantee that for these
elements ofC, the TVC'’s hold trivially — the expression that is supposed to go to zero in
limsup actually is identically zero. For elements of Gevector that enteonly with a lag,
the corresponding TVC components are identically zero. Thus there is only one non-trivial

TVC per “state” variable, if we label as a state any variable that enters both unlagged and
with a lag.

18. RESTRICTIONS

In many economic models we have the following additional simplifications:

(a) The subvector of that enters both currently and with a lag, which we will c&l,"
for “state vector"”, can be “solved for", so that the constraints have the form

S <h(S_1,lt,%-1%),

wherely, J is notation for the part of th€ vector other thai®.

(b) Paths withEp[liminf A4S < O] are not feasible (usually because of a no-Ponzi
condition or an inherently positiv§), while paths in which linB'A4S = 0 are
feasible (often obvious becauSe= 0 is feasible); here th& sequences are those
emerging from the candidate optimum p&h

(c) § does not enter thid function at all.

19. THE SIMPLIFIED CONDITION

It is easy to check that under these conditions our general TVIC (13) greatly simplifies, to
become

lim Eo [B'4S = 0] .
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In other words we can get rid of the lim sup operator, replacing it with an ordinary lim, we get

rid of the term depending dd, and we avoid having to consider the alternative sequedces
Condition [B) above usually is guaranteed by the fact that, as part of our hypothesis about

the candidate optimum, all th&’s are non-negative, while we have a lower boundSn

If these common conditions are met, then the “dot-product” form of the TVC equivalent

to the requirement that eady[B' 1t St] separately converges to zero, so we can check the

transversality condition one variable at a time.

20. APPLICATION TO THELINEAR-QUADRATIC PERMANENT INCOME EXAMPLE

In the conventional solution, we get from the FOC'’s
G =EGC1.

For the conventional solution to be correct, the constraint must be interpretecgsality,
so that to get it into our Kuhn-Tucker framework we must treat as two inequality constraints
(both linear, so both convex despite the sign change):

e W <RW_1-CG 1+Y
Vi W < —(RW-1—-C-1) + Y1)

There are then two positive Lagrange multipligesandv.

If we ignore the growth constrairfi£)), the solution to the problem is just to sgt= 1
even though apparently Euler equations and TVC are satisfied by the conventional solution.
The condition[(R) above is not satisfied, however, because instead of Wgvorgthe left,
one of the constraints hasM on the left, so the constraints are not “standard”. In particular,
when the constraint that hasW on the left is bindingW is a “bad", not a “good”. It,
together with the requirement in the conventional solution Watot grow too fast, is what
forces us to consume beyond satiation.

In the version of the model with the no-Ponzi condition replacing the growth constraint,
the problem is again non-standard, because still one of the constraints-Hag @n the
right-hand side.

To see that the full TVC is violated in the conventional solution if there is\frigrowth
constraint, observe that the TVC is

|il’thSOCl)Jp[3tE[(l—Ct)<Q Co) — (1 — vi) (W —W)] <

The Euler equations fdZ andW allow us to conclude that; — vi = 1—C;. In the standard
solution, 1-C; is arandom walk, so it becomes positive infinitely often and negative infinitely
often. It is feasible, as we have seen, to choose consumption equal to 1 in every period
that the standard solution would make it exceed one, and to leave consumption equal to its
standard-splution value at all other times. This yields higher utility @aand it implies that
eventuallyW4 = O(R!). With our assumption th®f = 1, we see then that there are feasible
W’s for which the limsup in th&V component of the TVC is in fact positive. Also, since this

G makess; — G negative at exactly those dates whenQ; is negative, th€ component of

the TVC must also have a non-negative limsup.
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When the constraint is the no-Ponzi condition limyinf, R 'EW > 0, we have to convert
the limit constraint into one that we can enter in the Lagrangian. The usual way to do this is
to use the no-Ponzi condition to derive the “intertemporal budget constraint”:

Eo [%R‘q — ZlRth
t= t=

T-1
< I|m EOI%R 'C — ZlR Y +R Tvvr]

=Wp.

We then enter this constraint into the Lagrangian with its own Lagrange multiplier (which
does not vary over time). Note that our theorem about sufficiency of Euler equations plus
transversality does not cover this case, as we did not allow for constraints that involve infinite
sums.

Finally, another version of this problem uggs< W, all t, as the constraints that prevent
excessive borrowing. These constraints of course get their own Lagrange multipliers, which
do have time subscripts. Since the constraints will bind only at occasional valugthef
Lagrange multipliers on them are zero at ntost
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