
Eco517 Fall 2013 C. Sims

EXERCISE ON PROBABILITY, DUE THURSDAY 9/19

(1) The state space S contains just four points j = 1, . . . ,4. Four securities with non-negative
yields on the points in this space (and all linear combinations of them) are traded in a
competitive, arbitrage-free market.
(a) Display a non-singular four by four matrix of yields on the four securities, with all

entries positive, together with a vector of positive prices for them, that is impossible
because it implies arbitrage opportunities. Show how you know that it presents an
arbitrage opportunity.
Here’s an answer:

y =


1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

 , q = (2.5,3.9,1.7,1.9) ,

where y is the matrix of security payoffs, each security in one column, states
corresponding to rows. A security that pays 1 in state 4 and zero in the other states
can be constructed as yw, where w is a column vector with elements

(0.275,−0.225,0.025,0.025) .

Such a security, though, has price q ·w, which is -.1. Thus this set of yields and
prices implies that it is possible to get a positive payoff, with no risk of loss, from
a security that you will be paid to hold (instead of your having to pay to hold it).
“Buying” arbitrarily large amounts of this thus gives you arbitrarily large resources
now, when you’re paid to take the security, and, if state 4 is realized, when the
yields are realized.
How did I come up with this example? We know from class discussion that
when linear combinations of securities can be bought and sold at constant prices,
They must be priced as if there is a “market probability measure” that weights
the states according to how likely they are (in a risk-adjusted sense). So I gener-
ated the y matrix, then formed a “bad” market measure that weighted the states as
(.1, .2, .8,−.1). This implied that the prices of the four securities were py, which is
the vector shown as q above. That q came out all positive was lucky, as otherwise
I would have had to keep experimenting, perhaps by replacing the negative-price
security with a linear combination of it and a positive-price security. Of course the
fact that my p vector had only one, slightly, negative price made the “luck” likely.

(b) Display a non-singular four by four matrix of yields on the four securities, with
all entries non-negative, together with a vector of non-negative prices for them,
that presents no arbitrage opportunities. Display the “market probabilities” and
discount factor that are implied by the yield vectors and their prices.
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Same y, but now q = (2.4,2.4,2.4,2.4). It looks pretty obvious that this will
work, because of the symmetries in y — all the columns have the same sum.
To calculate the market measure, we find y−1q = (.24, .24, .24, .24). Since the
weights in this market measure sum to .86, we can represent it as a discount
factor .86 times a market probability distribution that is uniform over the four
states.

Though as usual you can collaborate on this exercise, if your matrices of yields in these
answers exactly match those on another student’s answers, one-half point (out of five)
will be deducted from your grade. So randomize a bit.

(2) With S the state space, consisting of the four points S = {1,2,3,4}, what is the smallest
σ -field containing the two sets {2,3,4} and {1,2,3}?

F =
{

/0,{1} ,{2,3,4} ,{1,2,3} ,{4} ,{2,3} ,{1,4} ,{1,2,3,4}
}

. The σ -field must
contain the null set and the whole space, by the definition of a σ -field, and it must
contain the two given subsets. Also the complements of the two given subsets,
which are {1} and {4}. Every subset of the space can be obtained by unions or
intersections of these sets, except for subsets that contain only one of the elements
of {2,3}.

(3) With S the whole real line S = R, does the smallest σ -field containing all intervals
whose end points are finite rational numbers contain all intervals (a,b) where a and b
are arbitrary real numbers, including ±∞? Explain your answer.

Yes. For any positive real number a, we can construct a sequence
{

a j
}

of rational
numbers that converges to it — for example, we can truncate the real number’s
infinite decimal representation at successively higher numbers of decimal places.
Any number with a finite decimal representation is rational, and obviously these
“rounded” versions of a converge to a from below. To get a sequence of rationals that
converge to a from above, use the inverses of the truncated decimal representations
of 1/a. And the same devices work to get sequences converging from above or
below to negative numbers. By choosing

{
a j
}

to converge to a from above and{
b j
}

to converge to b from below, we can represent any open interval (a,b) as∪
j(a j,b j), and thus any open interval is in the σ -field. Since there are obviously

rational numbers converging to ±∞ (e.g. the integers), we can also represent any
one-sided open interval (a,∞) or (−∞,a) as a countable union of intervals with
rational endpoints. So, since the intervals (a,b) with arbitrary real endpoints are
contained within the σ -field with rational end points, the smallest σ -field containing
either of them contains the smallest field containing the other.


