
Eco517 Fall 2013 C. Sims

EXERCISE DUE FRIDAY NOON, 10/4

(1) Data on a sample of California schools is available on the course web site, either
as an R data file (caschool.RData) or an Excel file (caschool.xlsx). In R,
after load(“caschool.RData”, a data frame named caschool will be on
your workspace. A pdf file describing the variables is available as
californiatestscores.docx.
The principal components of a vector of random variables with covariance

matrix Σ are the uncorrelated vector of variables z = W ′y, where Σ = WΛW ′

is the eigenvalue decomposition of Σ. (W’s columns are Σ’s eigenvectors.) The
rows of W determine how much each variable in y = Wz “loads” on each of
the principal components z.
(a) Find the eigenvector decomposition of the correlation matrix of the nu-

meric variables in the data. (The first few columns are non-numeric.) [In R,
these commands may be helpful: cor(), or cov() followed by cov2cor(),
and eigen().]

(b) Which principal components are most important in determining testscr,
according to this decomposition? (I think two stand out.) Looking at the
columns of W corresponding to these two components, which variables are
strongly related to testscr?
Here’s a sequence of R commands that check which principal components are
most important in determining testscr.
> ev <- eigen(cor(caschool[ , -(1:5)]))
> dimnames(ev$vectors)[[1]] <- names(caschool)[-(1:5)]
> ev$vectors["testscr", ]
[1] 0.401332321 -0.120991993 0.032842203 -0.031406307 -0.105734363
[6] -0.110538803 -0.217087897 -0.283478808 -0.050556731 0.021938942

[11] -0.103401123 0.001055974 -0.810932894

The coefficients on testscr for the first and 13th are considerably bigger than
any of the others. These two columns of the eigenvector matrix are
enrl_tot -0.1509110 -7.740888e-07
teachers -0.1465162 1.055164e-06
calw_pct -0.2875774 -4.499499e-09
meal_pct -0.3790833 -1.524986e-07
computer -0.1114922 -3.692731e-07
testscr 0.4013323 -8.109329e-01
comp_stu 0.1563686 9.388346e-08
expn_stu 0.1133054 -7.164313e-10
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str -0.1474874 4.695266e-08
avginc 0.3076185 1.650080e-08
el_pct -0.3046274 1.808937e-07
read_scr 0.4029943 4.279097e-01
math_scr 0.3833833 3.991004e-01
The second has positive, nearly equal weights on read_scr and math_scr,
and a negative weight, about twice the size, on testscr. Its associated
eigenvalue is tiny, zero roughly to machine precision. This is just picking up
the fact that testscr is the average of math_scr and read_scr The only
reason the weights are not proportional to (1, -.5, -.5) is that the scores are
scaled slightly differently in the conversion to a correlation matrix. The first
column picks up substantial weights on many variables, including positive, sim-
ilar weights on all three score variables. The other large positive weight is on
avginc. Large negative weight appear on meal_pct and el_pct. str
gets a negative weight, but it’s small, fourth to last in absolute value.

(c) Using the same caschool data, estimate a linear regression of the testscr
(school average test scores) on all the other non-numeric variables except
the last two (math_scr and read_scr). [In R, the command
lm(testscr ~ x + y + z, data=caschool)
will work, with “x + y + z” replaced by a list of all the other variable
names, separated by plus signs.]
Here’s the part of summary(lmout) from R that gives coefficients and pos-
terior standard errors.
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.588e+02 9.748e+00 67.581 < 2e-16 ***
enrl_tot -5.647e-04 1.648e-03 -0.343 0.7321
teachers 8.203e-03 3.636e-02 0.226 0.8216
calw_pct -8.290e-02 5.834e-02 -1.421 0.1561
meal_pct -3.739e-01 3.634e-02 -10.288 < 2e-16 ***
computer 1.570e-03 3.112e-03 0.505 0.6141
comp_stu 1.018e+01 7.767e+00 1.310 0.1908
expn_stu 1.597e-03 9.035e-04 1.767 0.0779 .
str -1.525e-01 3.262e-01 -0.467 0.6404
avginc 6.147e-01 8.972e-02 6.851 2.71e-11 ***
el_pct -1.995e-01 3.508e-02 -5.686 2.47e-08 ***
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(d) Explain why the last two are left out — the principal components decom-
position may help.
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As already noted, the last two are related to testscr trivially via an identity,
and our regression would just recover the identity if we included those variables.

(e) If you were interested in what determines testscr, would you reach
different conclusions from the principal components decomposition and
the regression? Note that the principal components decomposition, be-
ing based on the correlation matrix, is scale-free, while the sizes of the
regression coefficients are not. The t-statistics, as found easily with the
summary() function applied to the regression output in R, are more com-
parable to the sizes of the coefficients in W.
The t statistics that exceed 2 are for the same variables that entered the first
principal component: avginc, meal_pct, and the signs of the coefficients on
variables other than testscr in the principal component vector match those
in the regression. Note that a tightly fitting regression generally does not match
this pattern. The 13th principal component, for example, has opposite-signed
coefficients on testscr and the two component scores. The same-signed
coefficient on the dependent variable that is found here arises when all the
variables that get substantial weight are acting like noisy measures of a single
underlying source of variation, which here might be “good school”, or, maybe
more plausibly, “student body from supportive backgrounds”.

(2) (Stopping rule paradox) Suppose one has data on a single family from an iso-
lated and unusual subculture where a) each family continues to have children
until they have a boy, and then stop having children and b) the ratio of male to
female births is not the usual .5 and is unknown. The data are just the family
size n, which of course consists of n − 1 female births and one male birth.
(a) What is the likelihood function for this single sample, as a function of the

unknown probability p of a male birth?
(1 − p)n−1p

(b) Show that a flat-prior Bayesian posterior mean for p is biased for most val-
ues of p. You can do this analytically, but quicker, and OK for the exercise,
is probably just to check it numerically. There will be one value of p for
which the posterior mean is frequentist-unbiased. What is it? (3 significant
figures accuracy OK).
The flat-prior Bayesian posterior mean, since the likelihood is proportional to a
Beta(n, 2) pdf, is 2/(n + 2). The mean of this estimator is

∞

∑
n=1

2
n + 2

(1 − p)n−1p

The point at which it is unbiased is p = .568, approximately. for p’s below that
it is biased up, for p’s above that it is biased down. The largest absolute bias is
at p = 1, where it is a downward bias of one third. The largest upward bias is
at around p = .16, where the bias is about .18.
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(c) If instead of one family, data on a fairly large number N of families is avail-
able, taking an arithmetic average of the Bayesian posterior means for each
family as calculated above is not a good way to estimate p. Why?
In a large sample, the average of the biased estimates will be biased by the
same amount as the individual estimates, so the estimates will not converge to
the truth as the sample size increases.

(d) The likelihood for the full set of observations on N families implies a pos-
terior mean that is different from the average of the family-by-family pos-
terior means. What is the posterior mean for the full likelihood?
If we multiply the likelihoods for all the individual families together, as is ap-
propriate if the family data are i.i.d. across families sampled, the result is just
the same likelihood we would get if we ignored the family groupings and just
counted boys and girls:

pN(1 − p)∑j nj−N ,

where N is the number of families (also the number of boys) and m = ∑j nj −
N is the number of girls, where j indexes families. With a flat prior, since this is
a Beta(N + 1, m+ 1) distribution, the posterior mean is (N + 1)/(N +m+ 2).
This does converge in probability to the true probability, because N/(N + m)
is the average over the sample of the i.i.d. variable that is 1 for boys and 0
for girls. Since the ratio of (N + 1)/(N + m + 2) to N/(N + m) goes to 1
as N and m go to infinity, the posterior mean converges to the true value with
probability one.

(e) There is a frequentist-unbiased estimate of 1/p for the case of data on a
single family. What is it? Is there an unbiased estimate of p itself for this
case? What about a procedure that takes an arithmetic average of the per-
family unbiased estimates of 1/p when there are N families, then estimates
p as the inverse of this average. Would it converge in probability to p as N
increased? Can it be improved upon?
This may have involved a bit more calculus cleverness than I intended. It seems
intuitively plausible that n, the number of children in the family, is an unbiased
estimate of 1/p. (This does involve treating n as +∞ when p = 0.) Proving
this is not hard, if you’ve seen this kind of argument before, but possibly hard
otherwise. The expected value of n is

∞

∑
n=1

np(1 − p)n−1 = p
∞

∑
n=1

− d
dp

(1 − p)n = −p
d

dp

∞

∑
n=1

1 − p
p

=
1
p

.

So n is an unbiased estimator of 1/p. Averaging it across a large number
of randomly selected families will therefore give a result that converges in
probability to 1/p. Notice that the average of n across the N families is just
(N + m)/N, which is the inverse of the maximum likelihood estimator of p.



EXERCISE DUE FRIDAY NOON, 10/4 5

The MLE, being average of N + m i.i.d. variables, satisfies the CLT and there-
fore converges to the true p at the rate (N + m)−1/2. One over this estimator
of 1/p differs from the Bayesian posterior mean by a factor that converges
to one at the rate 1/(N + m), so the two estimators are nearly the same in
large samples. The frequentist unbiased estimator of 1/p, because it is the
MLE for that function of the parameter, is a function of the sufficient statistics.
Thus there is no quick way to improve on it by taking its expectation conditional
on the sufficient statistics (i.e. applying the Rao-Blackwell theorem, which we
stated in class). Since it is the maximum likelihood estimator of 1/p, it is also
fully efficient as an estimator of that. So it can’t be improved upon.
Note that, though n is unbiased in a frequentist sense, it gives 1/p = 1 when
n = 1. We know that 1/p ≥ 1, so any reasonable distribution for 1/p given the
data in that case must have expectation above one. For characterizing post-
sample beliefs, calling the 1/p = 1 estimate “unbiased” is misleading, though
nonetheless technically correct, since “unbiasedness” refers only to behavior of
the estimator across hypothetical repeated samples, not to reasonable beliefs
given the actual sample at hand.


