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Monetary Policy with Uncertain Productivity Growth

State of the economy in the late 90’s:

• unemployment falling, to levels associated with accelerating inflation

• no sign of rising inflation

• productivity growing more rapidly than usual
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Policy views:

• Hawks

– high productivity growth temporary
– low unemployment makes inflation very likely
– monetary policy should be restrictive, since its effects are delayed

• Doves

– high productivity growth sustainable
– real costs therefore declining
– inflation therefore likely to remain modest
– monetary policy should continue to accommodate rapid growth

2



3



Common sense

• no setting of R outside the region bounded by the vertical lines is a good
policy.
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Common sense

• no setting of R outside the region bounded by the vertical lines is a good
policy.

• For each R in outside the region, there is some other R within the region
that delivers lower loss no matter which hypothesis is correct.

• policies within the region are “admissible”, policies outside it
“inadmissible”.

• We should choose an R nearer the right-hand vertical line if we think the
hawks are probably right, an R closer to the left-hand one otherwise.

• If we observe new data that tell us something about which hypothesis is
true, we should adjust our beliefs about the relative likelihood of the two
hypotheses and our choice of R accordingly.
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Decision theory

• Formalizes the process of assessing likelihoods and adjusting decisions in
the light of evidence.

• Statistical inference is the component that involves adjusting beliefs in
the light of newly observed data.

• Good decision making need not formally invoke the mathematics of
decision theory.

• Formal decision theory can be helpful in organizing thinking about
complex decisions or in facilitating communication in group decision
making.

• Formal decision theory can help in criticizing or interpreting decisions
that have been arrived at informally.
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Probabilities and expectations in a decision problem

We now summarize the information in the graph another way: we plot
all the pairs of loss function values available on the graph. Interest rates no
longer appear explicitly, though each point on the graph still corresponds to
a choice of R.
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Probabilities as budget-line-like tangents

• Every one of the admissible points corresponds to a tangent line, like the
one that has been drawn in on the figure.

• Such a line will be a linear function of the form ppLp + ptLt = A.

• We can normalize by requiring that pp + pt = 1.

• The point at which the line touches the curve clearly is the point that
minimizes ppLp + ptLt in the set of available loss pairs.

• pp and pt are probabilities on the “persistent” and “temporary” (dove
and hawk) hypotheses.
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• A is the expectation of losses for that choice of interest rate and the
pp, pt probabilities.

• Every choice of R that is not dominated can be described as minimizing
expected loss for some choice of probability weights.

• The result here, that admissible decisions can be represented as
minimizing expected losses under some set of probability weights, is
true under quite general conditions.

• This fact accounts for one main interpretation of probability theory, that
probabilities are weights on uncertain prospects that underly optimal
decisions.
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Probability from arbitrage-free pricing in competitive
markets

• S: possible states of the world, or contingencies

• Nsecurities with yield functions yj : S → R, j = 1, . . . , N .

• Securities sold on a competitive market.

• Any agent can create new securities with yield functions that are linear
combinations of the yj’s. The set of such linear combinations is F .

• Q : F → R. Q(z) is the market price of the security with yield z.
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No-arbitrage conditions → market expectations

• Linearity: z =
∑
ajyj ⇒ Q(z) =

∑
ajQ(yj).

• Positivity: z(ω) > 0 for all ω ∈ S ⇒ Q(z) > 0.

• If z(ω) ≡ c > 0 (i.e., z is a risk-free security), we define Φ = Q(c)/c.

• Φ is the risk-free discount factor; and Φ−1 the risk-free gross interest
rate.

• E[y] = Q(y)/Φ then has most of the properties of mathematical
expectation.
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Market expectations → market probabilities

• If S is a finite space with M elements, and if N ≥ M , with the yj
functions linearly independent, we can price, for each ωi ∈ S, a security
with yield ei defined as ei(ωi) = 1, ei(ωj) = 0, j 6= i.

• Set p(ωi) = E[ei].

• the M p(ωi)’s will be non-negative and sum to one, and E will be the
expectation operator with respect to the probability defined by these
weights. That is, E[z] =

∑
p(ωi)z(ωi).

12



Market probabilities are not frequencies

The market probability and expectation operator have all the
mathematical properties of probability and expectation, but they do not
connect to frequencies. That is, e.g., if the same market repeats at many
dates t, it is not true that

1

T

T∑
t=1

zt → E[zt]
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Physical probability: symmetry

• One may examine a coin carefully, weighing it, balancing it, etc., and
expect to reach a conclusion as to whether it is “fair” — that is, equally
likely to come up heads or tails when flipped properly.

• Decision-makers should not disagree about this. Markets should price a
security that delivers $1 for heads the same as one that delivers $1 for
tails, if the coin is fair.

• Sometimes we can find a collection of non-overlapping sets for which
symmetry arguments are compelling, and we can then construct from
them probabilities of more complicated sets.
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Physical probability: frequency

• Assume many replicas of the state space S, indexed by t = 1, . . . ,∞.

• We will observe for each t the value of zt(ω).

• Supose {fj}, T−1
∑T

1 fj(zt) always converges to a limit as T → ∞ for
some collection {fj}.

• Treat the mapping from fj to this limit as an expectation operator E[fj].

• As before, we can use the E operator to define a probability function.
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Few would disagree with the idea that when the conditions allowing
building probability from physical symmetry considerations or from limiting
frequencies are met, probabilities should be built that way. Furthermore, in
characterizing scientific results it makes sense to maintain a clean distinction
between such physically based probabilities and probabilities that do not
have such a foundation. On the other hand, in most real-world decision
problems most of the uncertainty has to be given weights without any
possibility of appeal to such long-run frequencies or physical symmetry.

Some descriptions of the foundations of probability theory seem to imply
that the interpretations we have given here are in conflict, as if they are
mutually exclusive. In fact, there is no conflict at all between decision-
theoretic interpretations of probability and the physical ones. Physical
probabilities are, from the decision-theoretic perspective, a special case.
Conflict only arises when physical probabilities are claimed to be the only
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legitimate type of probability.

Market probabilities are also understandable from a decision-theoretic
perspective. In a competitive market with rational agents behaving
according to the postulates of decision theory, it is possible to derive
the form of the market probabilities from knowledge of the probabilities
used by the individuals participating in the market (plus knowledge of their
budget constraints and utility functions).
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Formally defining expectations

• We can start from expectations and derive probabilities, or vice versa.
First we start with E.

• S: The “state space” of possible states of the world.

• F : A set of functions f : S → W , where W is a linear space. Such
functions are called “random variables”.

• Sometimes “random variable” is reserved for the case W = R, “random
vector” for W = Rn, “stochastic process” for W consisting of countable

sequences of real numbers (RZ+
), and “continuous time stochastic

process” for W consisting of functions over an interval of the real line.
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Properties of E : F →W

1. Ef is defined for all f ∈ F and F is a linear space.

2. If f and g are each in F and a and b are real numbers, E[af + bg] =
aEf + bEg.

3. If f(ω) ≥ 0 for all ω ∈ S, Ef ≥ 0.

4. If ∀(ω ∈ S)f(ω) = c, Ef = c. (Sometimes this is written loosely as
“E[c] = c”. We are also here assuming that the constant function is in
F .)

5. If fn ∈ F for every n, fn(ω) > 0 for every n and ω, and if for each
ω ∈ S fn(ω) ↓ 0 monotonically as n→∞, then E[fn]→ 0 as n→∞.
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In order to connect expectation to probability we need one more condition,
which we state here for the case where W = R:

6. For any f ∈ F the function f+, defined by

f+(ω) =

{
f(ω) if f(ω) > 0

0 if f(ω) ≤ 0
,

is also in F .

Condition (5) is not needed if we restrict ourselves to S with finitely many
elements.
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Formally defining probability
• F is a collection of subsets of S that forms a σ-field. This means

1. If Ai is in F for every i = 1, . . . ,∞, then
⋃

iAi ∈ F .
2. S ∈ F .
3. If A ∈ F , then Ac ∈ F . (Ac is the complement of A in S.)

Then a probability on F is a function P : F → [0, 1] satisfying

1. For any A ∈ F , P [A] ≥ 0;
2. P [S] = 1;
3. For any disjoint sets A,B ∈ F , P [A ∪B] = P [A] + P [B]; (A and B

disjoint means A ∩ B = ∅.)
4. If Aj ∈ F for every integer j, then

P

 n⋃
j=1

Aj

 −−−−→
n→∞

P

 ∞⋃
j=1

Aj

 .
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Connections to monetary policy example

• S is “hawks are right” and “doves are right”, which we can label as
points 0 and 1, say, to save typing.

• Random variables are, e.g., the
(
LH(R), LD(R)

)
pairs that we generate

with different R’s. That is, they are functions mapping {0, 1} to the real
line, or in other words just pairs of real numbers.

• F might contain all such pairs (i.e. be R2) or it might be the linear
subspace of R2 consisting of all pairs (x, y) such that x = y. (Can’t be
the space for which x = 2y. Why?)

• The most interesting σ-field on S is {∅, {0} , {1} , {0, 1}}, i.e. the set of
all subsets of S. There is one other: {∅, {0, 1}}.
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• The “interesting” σ-field and the F = R2 case correspond to each other.

• For this case, there must be a p ∈ [0, 1] such that we give probability
p ≥ 0 to {0} and 1 − p to {1}, with the probabilities of other sets
following from the rules.

• For this case, Ef = pf(0) + (1− p)f(1).

• The other case puts probability 1 on {0, 1}, 0 on ∅ and, since for
f(0) = f(1) for every f ∈ F , Ef = f(0) = f(1).
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Proof
• Here are some things related to the monetary policy example (actually

any two-element S) that are easy to prove. We’re not going to prove
them, but making sure you can see how to prove them is a good way to
check your own understanding.

• The only σ-fields on S are the two we’ve listed.

• The only linear spaces F of functions on S that meet the conditions
we’ve placed on F are the two we’ve listed.

• E and P functions of the form we’ve described here have all the properties
we’ve asserted for general P and E functions.

• Any P defined on one of the two σ-fields that has the properties we’ve
asserted for a probability function has the form we’ve claimed.

• Any E defined on one of the two possible F ’s has the form we’ve claimed.
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Connecting expectations to probabilities

• The general principle: If we have an E operator, we can generate a P
by setting P [A] = E[1A]; if we have a P , we can generate an E from
Ef =

∫
f(ω) dP (ω)

• But what is the F ↔ F connection, and what does
∫
f(ω) dP (ω) mean?

On this whole books have been written — e.g. the Pollard book listed
as supplementary material on the reading list.

• In this course we stick to some relatively simple special cases. All the F ’s
we consider will be either the linear space generated by the continuous,
bounded functions on S, or subspaces of that space.
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• All the F ’s we will consider will be either the σ-field generated by sets
of the form {ω | f(ω) ≤ a} for some f in F and some real number a, or
sub-sigma-fields of that one.

• The idea of a linear space generated by a collection of elements should
be familiar. A σ-field generated by a collection of sets is similar — the
smallest σ-field containing all the specified sets.

• Another way to say this is that we are always going to be talking
about probabilities in the context of some collection of random variables
with defined expectations, and that we always want to be able to put
probabilities on events (subsets of S) of the form a < f(ω) ≤ b, i.e. on
the event that a certain random variable lies in a certain interval on the
real line.
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Interpreting the integral

We will not try to develop a general interpretation of the integral (known
as a Lebesgue integral). For now, note that when S has a finite or countable
number of points, the j’th point in S has a probability pj and∫

S

f(ω) dP (ω) =
∑
ωj∈S

pjf(ωj) , (1)

while if S is Rn, the most common special case is one in which the
probability has a density function p and we can write∫

S

f(ω) dP (ω) =

∫ ∫
. . .

∫
p(ω)f(ω) dω1 dω2 . . . dωn ,

where what appears on the right is an ordinary Riemann integral.
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More generally, we can mix together probabilities spread smoothly over
Rn and probabilities that concentrate on lower-dimensional subsets or
subspaces of Rn.

For example: Consider the joint distribution of the minimum wage in
the state of employment and the actual wage for a person drawn at random
from a sample of fast-food workers.
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