
Eco517 Fall 2014 C. Sims

FINAL EXAM

This is a three hour exam. You may refer to books, notes, or computer equipment during the exam.
You may not communicate, either electronically or in any other way, with other people about the exam.
There are 160 points, 20 fewer than the number of minutes you have to complete the exam. Points for
each question are shown at the start of the question. You are expected to answer all questions. You
should not spend disproportionate time on any one question until you have tried all questions.

(1) Consider the model

yj = α0 + α1xj + α2x2
j + ε j , j = 1, . . . , N (1)

ε j | xj ∼ N(0, σ2) (2)

xj ∼ N(1, 1) (3)
xj, yj jointly i.i.d. across j . (4)

(a) (5 points) Does the model imply that yj, xj are jointly normally distributed?
Explain your answer.
No. x2

j enters the determination of yj, and xj itself is normal. This means

that x2
j is χ2(1), and thus not normal. Linear combinations of normal random

variables are normal, but since x2
j is not normal, yj is not normal, unless

α2 = 0.
(b) (5 points) Does the model imply that, conditional on the true values of

α⃗ = (α0, α1, α2) and the vector x⃗ = (x1, . . . , xN), the OLS estimator α̂
of α⃗ is jointly normally distributed? Is the marginal distribution of α̂,
conditioning only on α⃗ but not on x⃗, normal? Explain your answers.
The conditional distribution of α̂ | x⃗ is jointly normal. All the requirements of
the SNLM are met here. The SNLM makes no assertion about the distribution
of right-hand-side variables. It implies joint normality of the least squares
estimator conditional on right-hand-side variables. Or one could note that
if X is the N × 3 matrix of regressors (the constant vector, x⃗, and x⃗2), the
OLS estimator is (X′X)−1X′y, that y | X ∼ N(X⃗α, σ2 I), and that therefore,
conditional on X, the OLS estimator is a linear combination of normal random
variables and hence normal. But once we treat x⃗ as random, no longer
conditioning on it, we know that y is not unconditionally normal and the OLS
formula is in any case a non-linear function of the data, so we do not have
unconditional normality of the OLS estimator.

(c) (5 points) Is the posterior distribution, under a flat prior on α⃗, of α⃗ given
x⃗, y⃗ = (y1, . . . , yN), and σ2 normal? Is the marginal posterior distribu-
tion, with the prior on σ2 having pdf σ−2e−σ−2

, normal? Explain your
answers.
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Yes to the first question. The likelihood function, conditional on the data and
on σ2, has a Gaussian shape — it is a quadratic function of α⃗, exponentiated.
Once we recognize randomness in σ2, though, the normality no longer holds.
The prior given for σ2 is (unintentionally) not proper, but it is conjugate — that
is, it leaves the prior times likelihood the same shape as a likelihood function.
Equivalently, the prior can be implemented via dummy observations. Here
the dummy observations would be four observations, each with yj = 1/

√
2.

We know that a SNLM likelihood function makes the marginal posterior distri-
bution for α⃗ a multivariate t, not normal, so the answer to the second question
is “no”.

(d) (10 points) An econometrician proposes to estimate a simple linear re-
gression on the y⃗, x⃗ data, even though the model (1-4) is correct. That is,
he estimates β0 and β1 in the regression

yj = β0 + β1xj + νj (5)

by OLS. Assuming (1-4) are true for all N, what will be the probability
limit as N → ∞ of his estimates of β0 and β1, as functions of α⃗ and σ2?
[Hint: If z ∼ N(µ, ν2), E[z3] = 3µν2 + µ3.]
The X′X matrix is[

N ∑ xj
∑ xj ∑ x2

j

]
. ∴ 1

N
X′X P−→ [N → ∞]

[
1 1
1 2

]
.

(The lower right term in the probability limit is the sum of the variance and
the squared mean of xj.) We can find

E[xjyj] = E[α0xj + α1x2
j + α2x3

j ] = α0 + 2α2 + 4α2 ,

using the expression in the hint for E[x3
j ]. Therefore by the law of large num-

bers we have
1
N

X′y P−→ [N → ∞]

[
α0 + α1 + 2α2

α0 + 2α1 + 4α2

]
.

Then since (N−1X′X)−1N−1X′y P−→ [N → ∞]β̄ is the probability limit of
the OLS estimator, a little matrix algebra gives us the probability limit as the
β̄ = (α0, α1 + 2α2)

′.
A perhaps quicker way to get the same answer is to observe that the best
linear predictor of x2

j given xj is xjE[x3
j ]/E[x2

j ] = 2xj. Thus x2
j − 2xj has

unconditional expectation 0 and zero correlation with xj. We can put that into
the error term. So the equation

yj = α0 + (α1 + 2α2)xj + α2(x2
j − 2xj) + ε j , (∗)

with the last two terms lumped together as the error term, satisfies the condi-
tion that the error term is uncorrelated with the right hand side variables (the
constant and xj) and thus is consistently estimable by OLS.
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(e) (5 points) Assuming (1) is true, what, if any, optimality claims are possi-
ble for (5) as a forecasting equation to predict y from an x value not in the
original sample?
OLS on i.i.d. data always converges to the best linear predictor for yj given xj,
assuming that yj and xj are drawn from the same distribution that generated
the original sample. No optimality claims can be made if the new xj value
is drawn from some other distribution. Also, in general (and certainly here,
where we know there is a better non-linear predictor) the best linear predictor
is not the best predictor possible.

(f) (10 points) The econometrician estimating (5) claims that by using a hetero-
skedasticity-consistent covariance matrix (HCCM) for his estimates of
β0, β1, he obtains valid inference. Not only that, his inference will be
more robust than inference based on estimating equation (1) by OLS. Is
he correct in some sense, or is he mis-applying the theory he is invoking?
Explain your answer.
We can see from (∗) that the linear regression will be heteroskedastic, with
the heteroskedasticity dependent on X. Therefore the standard OLS asymp-
totic distribution theory does not apply, while the HCCM asymptotic distribu-
tion theory does apply. If the sample size is large and the non-normality not
too extreme (which would be true if the model (1) were correct) the HCCM
distribution theory for the estimates is likely to be reliable. Of course if (1) is
correct, that equation gives much better predictions of yj from xj than does
(5), and inference based on SNLM assumptions applied to (1) will be correct,
even in small samples (and is in that sense more robust than HCCM, which
only works in “large” samples). If (1) is not correctly specified, then infer-
ence based on it, using SNLM assumptions, will of course not be correct,
whereas so long as the i.i.d. assumption holds the HCCM distribution the-
ory for eqrefeq:lineq will apply. On the other hand, one could apply HCCM
inference to (1). This would also be asymptotically correct, and has the ad-
vantage that even if (1) is wrong, it gives the best quadratic predictor of yj
from xj, which can be no worse, and is generally better, than the best linear
predictor.

(g) (10 points) HCCM-based inference is supposed to correct for heteroskedas-
ticity, but (2) implies that residual variance is constant. Does this mean
that the HCCM and standard σ2(X′X)−1 covariance matrices will con-
verge toward the same value as N → ∞ if (1-4) are correct? (Consider
both inference for (1) and for (5).) Explain your answer.
For (1), the quadratic equation, the answer is yes. If its assumptions are all
correct, the HCCM covariance matrix, normalized by N−1/2, will converge to
the standard covariance matrix based on SNLM assumptions for that model.
For (5), the linear equation, the answer is no, because as we have already
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noted (1), if correct, implies heteroskedasticity in (5). The error term in the
linear equation is not ε j, but instead the last two terms in (∗).

(2) Suppose our model is

yij = µi + xijβ + εij (6){
εij | xij, µi

}
∼ N(0, σ2) (7)

εij i.i.d. across i = 1, . . . , M, j = 1, . . . , N (8)

µi ∼ N(µ̄, ν2), i.i.d. across i = 1, . . . , M . (9)

Suppose further that the number of groups M is large, while the number of
observations per group, N, is small, say around 3.
(a) (5 points) If we apply fixed-effects maximum likelihood, i.e. estimate all

the µi’s and β by least squares, is the estimate of β consistent as M → ∞
while N remains fixed? Are the estimates of µi consistent as M → ∞
with N fixed? Explain briefly.
The estimate of β is consistent under standard assumptions as the number
of observations goes to infinity, whether via increasing N or increasing M.
This is a standard result for fixed-effects estimation. But if M → ∞ with N
fixed, the number of observations with information about any particular µi is
always only N, so we do not have consistent estimation of individual µi’s.

(b) (10 points) If µ̂i is the fixed-effects estimator of µi, is the sample variance
of µ̂i, i.e.,

∑i µ̂2
i

M
−

(
∑i µ̂i

M

)2

, (10)

a consistent estimator for ν2? Why or why not?
No, it is not. Each µ̂i is an unbiased estimator of µi, under standard assump-
tions, so we can write µi = µ̂i + µ̃i, where µ̃i has zero mean and is the
estimation error. The variance of µ̂i is thus Var(µi) + Var(µ̃i) > Var(µi).
Since the estimation error in µ̂i does not shrink to zero with increasing M, the
sample variance of the µ̂i’s will converge to something larger than Var(µi).

(c) (15 points) Propose a (non-dogmatic) conjugate prior for the µ̄, ν2 pair
and use it to display the kernel of the posterior pdf for µ̄, ν2, {µi, i = 1, . . . , M},
σ2 and β. (You can keep the prior on β and σ2 flat.)
The question shoud have made clear that µi is assumed independent of the
xij’s, so that this is a standard random effects model. Everyone made this
assumption anyway, as it turned out.
The log pdf of the data (ignoring some constants) given the parameters In-
cluding the µi values as parameters is

−M
2

log(ν2)− 1
ν2 ∑

i

(µi − µ̄)2

ν2 − MN
2

log(σ2)− 1
2σ2 ∑

i,j

yij − xijβ − µi

σ2 .
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A conjugate prior is one that, when multiplied by the likelihood, has the same
form as the likelihood itself, when considered as a function of the parameters.
Such a prior can be implemented with dummy observations. Here, because
the number of parameters changes with sample size, there is some ambiguity
about what a conjugate prior would be. Here are two straightforward but
arguable answers. One might just make µ̄ and ν2 jointly normal-inverse-
gamma, with a zero prior mean for µ in the prior. Logged, this pdf would add,
for example, the terms

− k
2

log(ν2)− 1
2ν2 µ̄2

to create the log posterior density. The result doesn’t look exactly like the
likelihood, though. It is as if we saw an extra group of data, for which we
were able to observe µi directly. Another possibility would be to create a few
“dummy groups”, each with its own µ∗

i (the ∗ to distinguish the dummy groups
from others), and in which we had some observed y∗ij values and x∗ij = 0.
This would leave the form of the likelihood unchanged. It’s not exactly a prior
for µ̄, ν2, though, as it depends on the new artificial parameters µ∗

i . Those
could be integrated out, but then we would have an expression that also
involved σ2. Anything reasonable along these lines was OK for an answer.

(d) (15 points) With your prior, will the Bayesian posterior mean for ν2 con-
verge to zero when the true value of ν2 is zero? [Doing this by applying
calculus and algebra to the posterior kernel is probably too much work
to attempt in the exam. See if you can answer by appealing to what you
know about properties of Bayesian estimators.]
Bayesian posterior densities collapse on the true value (and hence in Gauss-
ian cases like this make the posterior mean consistent) whenever any con-
sistent estimate exists. In this model, with the σ2 assumed constant across
groups and the groups all the same size, we have within each group an un-
biased estimator of σ2: the sum of squared residuals for the group divided
by N − m, where m is the number of regressors. If M → ∞, the sample
average across groups of these estimates will converge to the true value of
σ2. Within each group, the variance of the OLS estimate µ̂i about its true
value µi is a function of σ2 and the xij values within the group. The sample
variance of the µ̂i’s is the sum of ν2 and the mean of the variances of the
µ̂i’s, which we estimate consistently. Hence we can subtract off the contri-
bution of the Var(µ̂i) terms to arrive at a consistent estimate of ν2. Since
such a consistent estimate exists, any Bayesian estimate with a proper prior
must be consistent. The priors we suggested above are not proper jointly
on β, µ̄, ν2, σ2, which leaves us one more step in the argument. (I should
have made the prior proper in the question statement to avoid this.) The pri-
ors proposed are proper on µ and ν2 jointly, and we know that OLS, together
with averaging ∑j u2

ij/(N − k) across i provide consistent estimates of β and
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σ2 even without using a prior. This suggests (which is as much as you can
probably do with this under exam time constraints) that for consistency what
matters is only the proper prior on µ̄ and ν2, since with any proper prior, even
an extremely flat one, on β, σ2 we would have consistency.

(3) Suppose Michigan and Ohio have both set up the same type of labor mar-
ket program, offering retraining to unemployed workers in the auto industry.
Assume the programs are administered by the same contractor and have the
same content. Participation in the program is voluntary, so not every eligi-
ble person participates. A random sample of unemployed autoworkers from
both states is drawn and the following regression equation is estimated:

wj = γ + Xjβ + αTj + ε j , (11)

where ∆wj is annual earnings two years after the end of the training program
for the j’th individual, Xj is a vector of worker characteristics, including indi-
cators of labor market conditions in the worker’s county, and Tj is a dummy
variable that is equal to 1 if and only if the worker took the training.
(a) (10 points) If the equation is simply run on the pooled data from both

states, the α estimate is positive and apparently sharply estimated, which
suggests the program works well. However, there is concern that only
highly motivated workers sign up for the program. This casts doubt
on whether the regression actually indicates the policy was successful.
Why?
This is selection bias. Highly motivated workers might get higher than av-
erage wages even if they did not take the training. This creates a positive
correlation between the Tj variable and the residual in the regression.

(b) (15 points) Suppose the program was implemented in only a few loca-
tions in Michigan, but in many more in Ohio, so in Ohio it was available
to a much larger proportion of all unemployed auto workers. If we have
data on the worker’s state of residence, this suggests a possible instru-
mental variables approach to obtaining a more accurate estimate of the
effect of the program. What is the instrumental variable and how would
it be used? What additional assumptions would be needed to justify this
new estimator as accurate?
Use the state of residence as an instrumental variable for Tj. We set up an
instrument vector Zj = (1, Xj, Sj), where Sj is a dummy variable for state
of residence. Define Wj = (1, Xj, Tj) as the original right-hand-side variable
vector, and let unsubscripted Z, y and W denote the stacked matrices formed
from the subscripted vectors. Then we estimate the coefficients as

(Z′W)−1Z′y .
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The assumptions needed are that Sj is correlated with Tj — which is implied
by the problem statement, since more people are supposed to have had
the option to take training in Ohio — and that Sj is not correlated with the
residual. That means thet Ohio workers are similar to Michigan workers in
their level of “motivation”, so that the only reason more workers took the
training in Ohio was the greater availability of it. This might be a problematic
assumption. Why were there more training centers in Ohio? If this was the
outcome of a political process, it might reflect greater interest in the training
in Ohio, making it more politically popular. There could also be differences in
labor demand in the two states, so that there are state-side wage differences
reflecting influences other than the training program. This again would imply
bias in the IV estimator.

(c) (10 points) Suppose, just to be safe, we included state dummy variables
in the regression equation. Would this interfere with our ability to use
the instrumental variable you proposed in 3b? Explain your answer.
Yes. The state dummy is the instrument. The instrumental variable cannot
be in the original equation, or rather, elements of Zj that are in the original
Wj vector are variables that we know are not correlated with the residual —
they are instruments for themselves. If the state dummy is in the equation to
start with, it is not available as an instrument for Tj.

(4) Suppose we are estimating a logit model with a single explanatory variable,
i.e. a model asserting

P[yj = 1] =
eα+xjβ

1 + eα+xjβ
. (12)

We would like to use dummy observations to express prior beliefs that center
on α = 0 and β = 0. We would like the implied prior to be proper, though of
course if we implement it through dummy observations we will not need to
scale it to integrate to one.
(a) (15 points) Suggest what form such dummy observations should take,

assuming that they all have y equal to zero or one as in the actual data.
[Hint: You will need to consider dummy observations in which values
for the “constant vector”, which are all ones for the real data, are possibly
not one for the dummy observations.]
Several people found ingenious ways to do this, including one way that does
not require considering observations with the constant vector not one. The
idea is that the dummy observations should express a belief that no matter
what the value of xj, the probability of yj = 1 is one half (which can happen
for all xj only if α = β = 0). One can do this by generating pairs of obser-
vations in which x values repeat while y is 1 in one of the pair and 0 in the
other. A single pair of such observations does not give a proper prior, but any
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two pairs with different x values does do so, e.g. the x, y pairs (0,1), (0,0),
(1,1), (1,0), which leads to the term in the likelihod

e2α+β

(1 + eα)2(1 + eα+β)2 =
1

(e−α/2 + eα/2)2(e−(α+β)/2 + e(α+β)/2)2
,

which can be seen to go to zero whenever α or β goes to ±∞ and to peak at
α = β = 0.
One can achieve the same effect by using pairs of dummy observations in
which yj = 1 for all of them, if the signs of the explanatory variables (xj and
the constant) flip between elements of the pair.

(b) (15 points)How would you vary the number or type of dummy observa-
tions to make the prior beliefs more or less tightly concentrated around
zero for both coefficients? Would dummy observations with y between
zero and 1 help? Would such dummy observations no longer imply a
conjugate prior?
As already noted, repeating the dummy observations tightens up the prior.
Using fractional value of yj doesn’t help, however. A pair of dummy obser-
vations with yj’s of m and 1 − m generates the same term in the likelihood
function as a pair with yj’s of 1 and 0. To weaken the prior, one could use
smaller values of the explanatory variables in the dummy observations. Here
it would be necessary to consider values of the constant vector less than one.
One could also note that m repetitions of the dummy observation pairs with
yj zero and 1 generates terms of the form(

eα+βx

(1 + eα+βx)2

)m

.

Picking m < 1 makes the prior flatter and flatter as m → 0. Such a prior is
not exactly conjugate, but would be easy to handle nonetheless.


