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TESTS, MODEL COMPARISON, MODEL CRITICISM

1. TESTS

• Each T(Y, θ), R(θ) pair in our construction of a confidence region makes up
what is known as a statistical test of the null hypothesis that θ is the true
value of the parameter. The parameter α is known as the significance level
or size of the test.

• So an exact confidence region can always be interpreted as a collection of
statistical tests with significance level α.

• More generally, we can consider tests of hypotheses that do not consist of a
single point in Θ. For such compound hypotheses, DeGroot and Schervish
distinguish level, or significance level, and size. The null hypothesis is some
set Ω0 ∈ Θ and the test still takes the form of a statistic T(Y) and rejection
region R. Only now it is possible that P[T(Y) ∈ R | θ] differs across θ’s in
Ω0. The standard definitions now say that the test has significance level α if
P[T(Y) ∈ R | θ] ≤ α for all θ ∈ Ω0, and that it has size α if it has level γ for all
γ ≥ α.

2. POWER

• The power function of a test is P[T(Y) ∈ R | θ] considered as a function of θ
over ΘªΩ0. (It could be extended to range over Ω0 also.)

• We would like a test to have a small size and have large values of the power
function for θ outside Ω0.

• We would like a test to be unbiased, meaning that the infimum of P[T(Y) ∈
R | θ] over Θ ª Ω0 is no smaller than the supremum over Ω0 of the same
thing. (Here ª is the set difference operator: Aª B = A ∩ Bc.

3. p-VALUES

• The p-value is generated by considering a family of tests or confidence sets
with different significance levels α or confidence levels 1− α. Usually these
are just all the tests generated from a single pivot by varying the size of the
test. The p-value in the data is then the maximal α at which the hypothesis
would be rejected in the sample at hand.

• The p-value is a way to summarize results without committing in advance to
a test size — the reader can use it to accept or reject based on any size.

c©2005 by Christopher A. Sims. This document may be reproduced for educational and research
purposes, so long as the copies contain this notice and are retained for personal use or distributed
free.



TESTS, MODEL COMPARISON, MODEL CRITICISM 2

4. BAYESIAN ANALYSES THAT LOOK LIKE TESTS

• Posterior tail areas. These can be useful descriptions of the shape of the pos-
terior pdf, and they will be close to p-values when the likelihood is approxi-
mately Gaussian in shape and the parameters are location and scale parame-
ters.

• Often interest centers not on the “null” value of the parameter at which the
p-value is computed, but at the most likely values. When the likelihood is
non-Gaussian in shape, p-values can be misleading, since they will not relate
to likelihood or posterior pdf shape in the usual way.

• When tests are not based on sufficient statistics, their p-values don’t connect
in a useful way to likelihood. For example, the √µ ∑(Xt − µ) pivot in prob-
lem 2 in the problem set depends on only one of the two sufficient statistics in
the model, and tests based on it do not tell you much about likelihood shape.

5

• Posterior probabilities on models. Think of “model number” as a parameter.
Integrate other parameters out of the likelihood, leaving a marginal posterior
distribution over models.

• This seems much like testing one model as H0 against another model (or
other models) as HA. But it turns out to be rather different.

• Example: Xt ∼ i.i.d. N(µ, 1). Consider this model vs. the same model with
the restriction µ = 0.

• X̄ is a pivot, there is an obvious, standard way to generate a .05 level test (or
rather two — two-sided and one-sided).

• To construct posterior probabilities we need prior probabilities q and 1 − q
on the two models. But also a proper prior on µ. This is a general fact —
meaningful posterior odds on models require proper priors on the model
parameters.

• The posterior is proportional to a discrete weight q exp(−.5 ∑(Xt)2) on the
µ = 0 model and a density (1− q)

∫
(2π)−1/2 exp(−.5 ∑(Xt − µ)2 − .5µ2) dµ

on the unconstrained model, assuming a N(0, 1) prior on µ in the unre-
stricted model. Here we are dropping common (2π)−T/2 factors from both
model likelihoods. The

√
2π factor in the second posterior weight comes

from the prior on µ.
• Integrating w.r.t. µ, we arrive at a weight on the second model of

e−
1
2 (∑ X2

t−(T+1)X̄2)
√

T + 1
,

where, because of the prior, We write X̄ = ∑ Xt/(T + 1). The integration
w.r.t. µ is done as usual by completing the square on the quadratic term in
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the exponent, so that the integrand, as a function of µ, becomes proportional
to a Gaussian pdf.

This leads to the log odds ratio

log
(

q
1− q

)
− 1

2
(T + 1)X̄2 +

1
2

log(T + 1)

Note that with q = .5, this criterion favors the unrestricted-µ model when

∣∣X̄
∣∣ >

√
log(T + 1)

T + 1
.

If instead we favored the restricted model when
∣∣X̄

∣∣√T > Φ(.975) (a usual
5% test of the µ = 0 null hypothesis), we would reject less often for small
T, more often for large T. The rejection threshold shrinks at the rate 1/

√
T

for the standard test, while it shrinks at log T/
√

T for the posterior odds
criterion. To give you an idea, here is the two-tailed significance level corre-
sponding to the posterior odds ratio of 1 for a few sample sizes:

Sample size Significance level
5 .22

20 .088
80 .038

400 .0144
4000 .004

The sample size at which the .05 level corresponds to equal posterior odds is
about 50.

• These results do depend on the prior. If we had taken the prior standard
deviation of µ in the unrestricted model to be 2 rather than 1, the resulting
lower pdf in the neighborhood of µ = 0 would have favored the restricted
model. Even in a sample of 5, in that case, the equal odds ratio would have
corresponded to an 8.8% significance level and at a sample of size 20 to a
2.7% level.

6. WHAT ARE TESTS AND CONFIDENCE SETS FOR?

(i) Contributions toward characterizing the shape of the likelihood.
(ii) “Is this model, or this restriction on the model, consistent with the data?”

(iii) “Could this apparently interesting result have arisen ‘at random’?”
(iv) Which should we use, H0 or HA, for decision-making purposes?

7. BAYESIAN VIEWS ON TESTS AND CONFIDENCE SETS FOR THESE PURPOSES

• Confidence sets that correspond to HPD density regions under a flat prior,
like the usual SNLM confidence sets, are indeed useful to describe the likeli-
hood.
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• With point null, point alternative and observation of the test outcome only,
test rejection or acceptance, together with the significance level and power
of the test, completely characterize the likelihood. Of course usually we can
observe more than just the test outcome and in realistic decision problems
the point null, point alternative framework is rare.

8. SIMPLE EXAMPLE OF SOMEWHAT INSTRUCTIVE p-VALUES

{X1, . . . , XN} ∼ i.i.d.N(µ, σ2)

p− value : 1− Ft(N−1)

(
X̄
s

)
= P

[
tN−1 >

X̄
s

]
.

Here the test family is the family of one-sided tests of H0 : µ = 0 that reject when
X̄/s is too far below zero. The tests are based on a pivot, whose distribution is tN−1
under the null. It should be clear that the model, the number of observations, and
the p-value tell us quite a bit about the likelihood. But they don’t fully characterize
it. See the diagram. If we add to the number of observations and the p-value the
point estimate X̄, we do have a complete characterization of the likelihood.
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9. COULD THE RESULTS HAVE ARISEN “AT RANDOM”?

• Bayesians have tended to be annoyed with this question, while some non-
Bayesians will say that the ability to answer this question with a “test” is a
primary reason for their adherence to a non-Bayesian approach to inference.

• Some Bayesians, including Lancaster and Gelman, Carlin, Stern and Rubin,
like the idea of a Bayesian approach to answering this question.

• While some ways of answering the question are sensible, this is true only
when there is in the background an implicit class of alternative models. There
is really no way, in a Bayesian or non-Bayesian framework, to test a model
against no model.

10. EXAMPLE

The sample mean of X1, . . . , XT is X̄. Perhaps this seems big, but could a sample
mean this big have arisen “at random”? Here again we can calculate X̄/s and check
it against the tT−1 distribution. If it is far out in the tails we say the result is “signifi-
cant” — meaning it is unlikely to have arisen “at random”. This can be interpreted
either as the outcome of an hypothesis test, or as a statement that a flat-prior poste-
rior has little probability so far out in its tail. This situation is shown in the upper
panel of the figure, which is a plot of the pdf of X̄/s under H0 : µ = 0. The red lines
on the plot are the boundaries of the acceptance region for H0.

But suppose instead of checking the distribution of X̄/s we check the distribution
of s/X̄? The lower panel shows this pdf under the null. The rejection region of the
upper panel maps into a narrow region around zero in the lower panel. Further-
more, if we had formed a rejection region directly from the lower panel, picking a
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region of highest pdf values, it would include a narrower band around zero, plus
tails of this distribution. The boundaries are marked by the green vertical lines, both
here and in the upper panel.

Which rejection region is better? There is no answer without specifying what kind
of alternative we have in mind.
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11. ARBITRARINESS OF DENSITY HEIGHTS

• By monotone transformation of a random variable, we can make the density
high or low wherever we like.

• The pdf of Y = g(X) is f (g−1(Y)))/g′(g−1(Y)). If h(·) is an arbitrary den-
sity function we want to match, we form the corresponding Fh cdf and set
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F(g−1(Y)) = Fh(Y), or g(x) = F−1
h (F(x)). So long as h was every where

non-zero, the inverse function of the cdf Fh will exist.
• So what are the “unusual” or “unexpected” values of X that we could ob-

serve to make us reject an assumed distribution for it? Those in low-pdf
regions for X? Or in low-pdf regions for g(X)?

• Every real number has zero probability of occurring if X has a positive density
everywhere. We form positive-probability rejection regions only by grouping
points, and the ways we do this grouping are arbitrary — unless we have an
alternative hypothesis in mind.

• If there is an explicit alternative, the sensible thing to do is to base rejection
regions on the ratios of the pdf’s of the observations under the null and the
alternative — that is on the likelihood ratios, which also determine the pos-
terior probabilities.

• Likelihood ratios are invariant under monotone transformations. If H0 gives
X the pdf f (x) and HA gives it the pdf q(x), then the ratio of the two pdf’s
for Y = g(X) is

f
(

g−1(y)
)
/g′(g−1(y)

q
(

g−1(y)
)
/g′(g−1(y))

=
f (x)
q(x)

.

12. COMPLICATIONS

• Our discussion has applied to a case where the model implies a pdf for the
data, so the likelihood across models is determined directly from the ob-
served data.

• Two common complications
(1) Each model being compared has estimated parameters, so the likelihood

varies over these parameters as well as over models.
(2) Instead of using the likelihood over all the data, we form a test statistic

T(Y), which may not be a sufficient statistic, test based on this rather
than on Y.

• The first means there are many likelihood ratios between models, as we vary
the model parameters. One must average them, maximize them, or in some
other way aggregate them. Bayesian posterior probabilities average likeli-
hoods using the posterior weights on the parameters. Classical tests that
perform well generally do the same thing, or almost the same thing.

• The second means we are not using all information in the sample, if T(y)
is not a full list of sufficient statistics. It can happen that likelihood ratios
between models depend only on some of, or a few functions of, the sufficient
statistics, in which case using only these functions of the data involve no loss.
But whether there is a loss, and how big it is, depends on the models being
compared. It can be useful to base tests on an easily computed T(Y) even if
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there is some loss of information, so long as we know that the information
loss is not too great.

13. BACK TO THE X̄/s EXAMPLE

• So when would it make sense to reject H0 : Xt ∼ N(0, σ2) on the basis of
large values of X̄/s?

• The sufficient statistics for the unknown parameter σ is ∑ X2
t , not X̄/s, so it

must be that the implicit alternative has a likelihood sensitive to X̄ and s2

separately.
• One class of alternatives (the only one?) for which this kind of rejection re-

gion does make sense: HA : Xt i.i.d. N(µ, ν2), with the priors on log ν and
µ approximately flat. How do we know this? The Bayesian posterior odds
ratios in this case are a function of X̄/s.

• Classes of alternatives for which this kind of rejection region makes no sense:
HA : Xt i.i.d. N(1, ν2) or N(µ, 1).

• In this example it is fairly clear intuitively what are the alternatives against
which the test is and is not powerful. In more complicated models, tests
of a null presented with no discussion of what they are powerful against
should be regarded with suspicion. Even in apparently standard cases, it is
worthwhile to think through what kinds of alternatives the test would be
weak against.

• Often the easiest way to do this is to figure out how the posterior odds ratios
depend on the data under various alternatives.

14. BAYESIAN MODEL CHECKING

• Like non-Bayesian “testing against nothing”, this attempts to see whether the
observed data is “unlikely” given the model, without specifying an alterna-
tive model.

• Using a pre-data distribution for the data: Using prior and model, generate,
either by simulation or analytically, a distribution for T(Y) that does not con-
dition on the parameter. Look to see if observed T(Y) is toward the center of
this distribution.

• Using a post-data distribution: draw from the posterior on the parameters,
then for each draw of the parameters, draw a sample T(Y). Again check to
see if the observed T(Y) is near the center of the distribution.

• It is hard to see how to make sense of these ideas, as they rely on our being
able to distinguish “likely” from “unlikely” values without reference to an
explicit alternative hypothesis. As we pointed out above, monotone trans-
formations of the data can make any region of the sample space have arbi-
trarily high or low density. To reject a model, we should have in mind that



TESTS, MODEL COMPARISON, MODEL CRITICISM 9

some other model makes the observed data more likely than does the rejected
model.

Suppose a farmer has a hypothesis that feeding pigs corn rather than pump-
kins makes them grow faster. He starts feeding half his pigs corn, the other
half pumpkins. A week later, he looks out the window and sees all his pigs
have grown wings and are flying. This is so unlikely, under the model that
says pigs grow faster eating corn, that he concludes he must reject the hy-
pothesis that they grow faster eating corn. If this reasoning makes sense to
you, you will be interested in further study of checking models without spec-
ifying alternatives. See sections 2.4-2.5 of Lancaster.

15. MODELS FOR DISCRETE DATA

Most of what we discussed under this heading is in Lancaster’s section 5.2. Lan-
caster shows how to derive the Probit from a choice model, but he doesn’t explain
the corresponding story for the logit.

In both probit and logit, we can think of the observed variable yi as equal to 1 if
U1i = xiβ1 + ε1i > U0i = xiβ0 + ε0i, where ε ji, j = 0, 1 are independent of each other
and of xi and the data are i.i.d. For the probit model, we assume ε ji ∼ N(0, 1/

√
2),

and this leads to the criterion that yi = 1 iff xiγ > −νi, where νi = ε1i − ε0i is N(0, 1)
and γ = β1 − β2.

For the logit, the question is what distribution of ε ji in a setup like this would
lead to the logit model. The answer is the log-Weibull distribution, which has cdf
exp(−e−x) and pdf e−x exp(−e−x). This pdf is single-peaked with a max at x = 0. It
has a more or less bell shape, though its tail drops off much more rapidly to the left
than to the right.

Besides logit and probit, you should understand the defects of the linear proba-
bility model, which are discussed in Lancaster along the same lines as the lectures.


