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PDF’S, CDF’S, CONDITIONAL PROBABILITY

1. DENSITIES

• In Rn any functionp : Rn→R satisfyingp(x)≥ 0 for all x∈Rn and
∫
Rn p(x)dx= 1

can be used to define probabilities of sets inRn and expectations of functions onRn.
The functionp is then called thedensity, or pdf (for probability density function)
for the probability it defines.

• As a reminder:

P(A) =
∫

x∈A
p(x)dx , E[ f ] =

∫
Rn

f (x)p(x)dx.

2. DENSITIES FOR DISTRIBUTIONS WITH DISCONTINUITIES

The only kind of discontinuous distributions we will be concerned with are ones that lump
together continuous distributions over sets of different dimensions. That is we consider cases
where

• S= S1 + · · ·+Sn with theSj disjoint;
• EachSj is a subset ofRn j for somen j , embedded inS= Rn; (Technically, eachSj

maps isometrically into a subset ofRn j .)
• For A j ⊂ Sj ,

P(A j) =
∫

A j

p(x(z))dz,

where the integral is interpreted as an ordinary integral w.r.t.z∈ Rn j , x(z) maps
points in Rn j into the corresponding points inRn, and p(x) is what we define as
the density function for this distribution, over all ofRn. Special case:Sj = R0, i.e.
Sj =

{
x j

}
, a single point. Then the “integral” is justp(x j).

• Then we can find the probability of anyA⊂ Rn, in theσ -field B generated by the
rectangles, from

P(A) =
n

∑
j=1

P(A∩Sj) .

• Morals of the story: There isalwaysa density function, and we can always break
up calculations of probability and expectations into pieces, all of which involve just
ordinary integration. (There are more complicated situations, which we won’t en-
counter in this course, where the part about ordinary integration isn’t true.)
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3. CDF’ S

• The cdf (cumulative distribution function) of then-dimensional random vectorX is
defined by

FX(a) = P[X ≤ a] = P[Xi ≤ ai , i = 1, . . . ,n] .
• Useful to plot, easy to characterize inR1. F is a cdf for a univariate random variable

if and only if F(x) → 0 asx→ −∞, F(x) → 1 asx→ ∞, andF is monotonically
increasing.P[(a,b]] = F(b)−F(a).

• In 2d, it is not true that any monotonically increasing function that tends to 0 at−∞
and to 1 at+∞ is a cdf.

• Additional necessary condition inRn is thatF imply that all rectangles

{x | a1 < x1 ≤ b1, . . . ,an < xn ≤ bn}= r(a,b)

have positive probability. This translates in 2d to

F(b1,b2)+F(a1,a2)−F(a1,b2)−F(b1,a2)≥ 0, all a≤ b∈ Rn .

• Expressing probabilities of rectangles with cdf values becomes more and more messy
asn increases.

• Sufficient conditions, in addition to the 0 and 1 limits, that ann times differentiable
functionF onRn be a cdf:∂ nF/∂x1 . . .∂xn≥ 0 everywhere, in which case this partial
derivative is the density function.

• cdf’s are widely used to characterize and analyze one-dimensional distributions.
Higher dimensional cdf’s don’t turn up often in applied work.

4. CONDITIONAL EXPECTATION

Suppose we have a random variableY and a random vectorX, defined on the same prob-
ability spaceS.

• Theconditional expectationof Y givenX is written asE[Y | X].
• It is a function ofX alone.
• For any continuous, bounded functiong of X, E[g(X)Y] = E

[
g(X)E[Y | X]

]
.

• This propertydefinesconditional expectation.
• Conditional expectation is unique, except that iff (X) andh(X) both satisfy the defin-

ing property forE[Y | X], it is possible thatf (X) 6= h(X) on a set ofX values of
probability zero.

5. SPECIAL OPTIONAL SLIDE FOR ANYONE WHO KNOWS MEASURE THEORY AND

DOUBTS THAT C.E.’S ALWAYS EXIST

• For any random variableY with finite expectation, we can define, byσY(A) = E[1A ·
Y], a set function on theσ -field BY,X generated by rectangles inY,X-space.

• σY is continuous w.r.t. the joint probability measure onY,X space — that is, if
P[A] = 0, thenσY(A) = 0. This is clear becauseσY is by construction a set function
whose Radon-Nikodym derivative w.r.t. probability onX,Y space isY.
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• If we restrictσY to BX, the sub-σ -field generated byX, is of course still absolutely
continuous and has a Radon-Nikodym derivative w.r.t.P restricted to this sub-σ -
field. The only regularity condition necessary for this is thatσY restricted toBX is
σ -finite, and sinceY has finite expectation, this is automatic.

• The Radon-Nikodym derivative ofσY w.r.t. P restricted toBX is E[Y | X].

6. CONDITIONAL PROBABILITY

• P[A | X] = E[1A | X].
• Interesting question: IsP[ · | X] defined this way a well-behaved probability function

on B for everyX, or at least for a set ofX’s with probability 1? Too interesting for
us. The answer is yes for the situations we will encounter in this course.

• In the standard purely purely continuous case, there is aconditional pdf, which can
be found from the formula

p(y | x) =
p(y,x)∫
p(y,x)dy

.

• In the pure discrete case (yi andx j each take on only finitely many values onS) the
corresponding formula is

p(yi | x j) =
p(yi ,x j)

∑k p(yk,xi)
.

• The discrete formula is a special case of the continuous one if we use Lebesgue
integration in the denominator and use the natural interpretation of what theSj ’s are
for the integral. In the simplest mixed discrete-continuous cases, where theSj ’s are
all isolated points except for one, sayS1, that is the rest ofS, the integral formula also
applies, again with the natural interpretation of what theSj ’s are when we integrate
w.r.t y.

• In more complicated situations, though, where theSj ’s have positive dimension, the
simple density-based formula cannot be relied on. This occurs rarely, so we will not
attempt to discuss general rules for generated conditional densities in this case. If
you encounter it in research (or, maybe, in a problem set), you can handle it by going
back to the defining property of conditional expectation.

7. MARGINAL DISTRIBUTIONS

If X andY are two random vectors defined on the same probability space and with joint
densityp(x,y), themarginal pdf of X is π(x) =

∫
p(x,y)dy. It can be used to determine the

probability of any setA defined entirely in termsX, i.e.

P[A] =
∫

A
p(x,y)dxdy=

∫
A

(∫
p(x,y)dy

)
dx=

∫
A

π(x)dx.

The second equality follows because the restriction of the domain of integration toA puts no
constraint ony, because by assumptionA is defined entirely in terms ofx.
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With this definition, we can see that the rule for forming a conditional density from a joint
density can also be written more compactly asp(y | x) = p(x,y)/π(x)

8. INVERSE PROBABILITY AND BAYES’ RULE

• A common situation: There is a “parameter”β whose value we don’t know, but we
believe that a random variableY has a distribution, conditional onβ , with density
p(y | β ).

• Before we observeY our uncertainty aboutβ is characterized by the pdfπ(β ).
• The rule for forming conditional densities from joint can be solved to give us the

joint pdf of y andβ : q(y,β ) = p(y | β )π(β ).
• Applying the rule again, we get the conditional pdf of{β |Y} as

r(β | y) =
p(y | β )π(β )∫

p(y | β )π(β )dβ
.

• This isBayes’ rule.

9. INDEPENDENCE

• If two random vectorsX andY have joint pdfp(x,y), they areindependent if and
only if p(x,y) = qX(x)qY(y), whereqX andqY both integrate to one.

• In this case it is easy to verify thatqX andqY are the marginal pdf’s ofX andY and
alsoqX(x) = qX|Y(x|y), qY(y) = qY|X(y|x), that is,qX andqY are also the conditional
pdf’s of X |Y andY | X.

• Obviously this means that the conditional distribution of{Y|X} does not depend on
X and for any functionf of Y, E[ f (Y) | X] = E[ f (Y)]. (Of course also the same
things with theY,X roles reversed.)

• A more general definition:Y is independent ofX if for every functiong(Y) such that
E[|g(Y)|] < ∞, E[g(Y) | X]≡ E[g(Y)]. It turns out that if this is true, the same is true
with the roles ofx andy reversed.

• A collection {X1, . . . ,Xn} of random vectors ismutually independent if for every
i and for everyg with E[g(Xi)] defined and finite,E[g(Xi) | X−i ] = E[g(Xi)]. Here
we’re using the notation thatX−i means all the elements of theX vector except the
one with indexi. If they have a joint pdf, this is equivalent to

p(x1, . . . ,xn) =
n

∏
i=1

qi(xi) .

• It is possible to haveXi independent ofXj for any i 6= j between 1 andn, yet to have
the collection{X1, . . . ,Xn} not mutually independent. That is, pairwise independence
does not imply mutual independence.


