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MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM

1. SOMETHING WE SHOULD ALREADY HAVE MENTIONED

A t,(u,X2) distribution converges, as n — oo, toa N(y, X).
Consider the univariate case, where the ¢, (0, 1) pdf is

v+l —(v+1)/2
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Using the calculus fact that (1 +a/n)" — e" as n — oo, it is easy to show that the

part of the pdf that depends on x converges to exp(—(x — u)?/2).

Note also that the t distribution has moments only up to order v — 1. So it does
not have a moment generating function.

2. STEIN’S RESULT

e In the standard normal linear model, with a loss function of the form (B —

B)W(B — B) with W p.s.d., the OLS estimator of B is admissible for k < 2,
kx1
but not for k > 2.

He proved this by constructing an estimator that dominates OLS.

However, his estimator is also not admissible.

Bayesian posterior means with proper priors are of course admissible.

However, only a narrow class of them dominates OLS, and the class will vary

with W.

e So long as an estimator is admissible, that it also dominate OLS is not neces-
sarily desirable.

e These results reflect standard good practice in applied work. When there are
many regressors, everyone understands that it is possible to make the predic-
tions from OLS regression estimates turn out badly by including regressors
whose estimates have high standard errors. So researchers exclude variables
based on prior beliefs.

e But it might be better sometimes to formulate priors explicitly probabilisti-

cally, instead of excluding variables informally.
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3. MAXIMUM LIKELIHOOD ESTIMATION

e The MLE of 6 is the value of 6 that maximizes p(Y |0).

e It may not exist.

e It is rarely justifiable as a Bayesian estimator.

e While it is often thought of as a non-Bayesian estimator, it is not generally
unbiased and does not generally have any other good properties except being
a function of sufficient statistics.

e Under general conditions that we will study later, it has “approximately”
good properties when the sample size is large enough.

e It is usually the starting point for the task of describing the shape of the like-
lihood. But there are some cases where it is by itself not much use: many
local maxima, all of similar height; cases where the peak of the LH is narrow
and far from the main mass of probability.

4. SET ESTIMATION

e This is a procedure that is hard to rationalize from a Bayesian perspective, so
we’ll come back to that at the end.

e A 100(1 — a)% confidence set for the parameter 6 in the parameter space ®
is a mapping from observations Y into subsets S(Y) C © with the property
that for every 6 € ®, P[0 € S(Y) | 0] = (1 — ).

e 1 — « is the coverage probability of the set. Such a random set can have
different coverage probabilities for different values of 6, but then it is not an
exact confidence set.

e An exact confidence set may not exist, so the definition is commonly relaxed
to say that S(Y) is 100(1 — «)% set if

min P[0 € S(Y) |0] =1 —u,
0c@
that is, if its coverage probability is at least 1 — « for every 6.

5. WHAT IS “CONFIDENCE”?

e [tisin practice nearly always treated as if it represented posterior probability.
In both popular press and applied economic literature you will see a result
that a 95% interval S(Y') for 0 has realized value (a,b) described as a result
that “it is 95% sure that 0 is between a and b” or “the probability that 6 is
between a and b is 95%”.

e Sois it connected to posterior probability? Yes, to some extent.

e In the SNLM, confidence sets generated in the usual way (which we will see
shortly) have, under a flat prior on 8 and log ¢, posterior probability equal to
their coverage probabilities.
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e In general, a 100(1 — a)% confidence set must have posterior probability of
at least 1 — y with unconditional probability at least 1 —a /<. So, e.g., an
interval with coverage probability .99 must have posterior probability at least
.9 for a set of Y’s with pre-sample probability (accounting for uncertainty
about 6 via the prior) at least .9.

e For 95% confidence sets this result is pretty weak: 95% intervals must have
posterior probability at least .9 with unconditional probability at least .5.

E[P[6 € S(Y)|Y]] = E[P[6 € S(Y)]] = E[P[0 € S(Y) |6]] =1 —a.

That is, the prior probability, before the data is seen, that an exact (1 — a)%
set will contain the true value of the parameter is 1 — &, regardless of the
prior distribution on the parameter, and this is the prior expected value of
the posterior probability of the set. So the posterior probability of the set, if it
is not always equal to the confidence level, must be higher in some samples,
lower in others.

6. EXAMPLE: BOUNDED INTERVAL PARAMETER SPACE

e We are estimating y which we know must lie in [0, 1]. We have available an
estimator fI with the property that {#| Y} ~ N(x,.1?).

e A 95% confidence interval for y is therefore fi £+ .196.

e Notice that the fact that we know p € [0,1] did not enter the calculation of
the confidence interval. In fact to keep it a subset of the parameter space, we
must make the interval {f1 £.196} N[0, 1].

e With non-zero probability, the confidence set is empty.

e With non-zero probability the confidence set is a very short interval, with
very small posterior probability, which conventional mistaken interpreta-
tions would treat as indicating great precision of the inference.

7. EXAMPLE: RED-GREEN COLOR BLIND AT THE TRAFFIC LIGHT

A witness to a traffic accident is red-green color blind, but can perfectly distin-
guish yellow. The traffic light is unusual, arranged horizontally. The witness, we
have determined, does not like to admit colorblindness, and when asked the color
of red and green objects simply announces one or the other color at random, with
equal probabilities.

His deposition in this accident states that he observed the traffic light, and it was
yellow.

Do we say “with 100%” confidence the light was yellow”, or “with 50% confi-
dence the light was yellow”? Both statements could be valid, but we would have
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had to commit before seeing the witness’s answer to how we would behave if he re-
ported red or green. If we would say “with 50% confidence the light was red” when
the report was red, then we have to quote the same confidence level when the light
is yellow. But if when the report is red we would say instead “with 100% confidence
the light was either red or green”, then we are using a 100% confidence set and we
should say the light is yellow with 100% confidence.

Of course this is ridiculous. The posterior probability of yellow given the report
of yellow is 1.0, regardless of the prior, so every sensible person would simply say
the light was surely yellow, and the fact that the witness was red-green color blind
is irrelevant, given that the light was not in fact red or green.

This is a special case of a general problem with using pre-sample probability state-
ments as if they were posterior probability statements — pre-sample probabilities
depend on samples that did not in fact occur.

8. EXAMPLE: DATA WITH DIFFERENT VARIANCES

e Suppose O is the two-point space {0,1} and when § = 0 our data Y are
N(0,.5) whilewhen 6 =1Y ~ N(1,1).

e An apparently natural way to form a confidence set would be to have it in-
clude both 0 and 1 when Y € (—.644,.82), 0 only when Y < —.644, and 1
only when Y > .82. This would indeed be an exact 95% confidence set, as
you should be able to check.

e But when Y is below -1, the likelihood ratio in favor of 8 = 1 is large. Indeed
the strongest likelihood ratios in favor of 6 = 1 occur for large negative (or
positive) Y’s.

e So making such observations deliver a confidence set containing only 6 = 0
is unreasonable.

e There are ways to construct more reasonable confidence sets in this example,
and of course posterior probability intervals would not show this kind of
anomaly.

9. “SIGNIFICANT” AND “INSIGNIFICANT” RESULTS

e What we say here applies about equally to confidence sets and to minimum-
size posterior probability sets.

e There is a big difference between a result that posterior probability is con-
centrated in a small (from the point of view of the substance of the problem)
region around B = 0 and the result that the sample data is so uninforma-
tive that the posterior probability is spread widely, with a 95% HPD region
therefore including 8 = 0.

e The former says we are quite sure that p is substantively small. The latter
says B could be very big, indeed from looking at the data alone seems more
likely to be big in absolute value than small in absolute value.
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e Yetitis not uncommon to see one regression study, which found an “insignif-
icant” effect of a variable X, cited as contradicting another study which found
a “significant” effect, without any attention to what the probability intervals
were and the degree to which they overlap.

10. OLD BUSINESS

e Lancaster’s definition of a natural conjugate prior: It implies that any prior
pdf that has the form 7ro(B)¢(Y*,6), where £(Y*,0) is what we have called a
conjugate prior, is a “Lancaster-conjugate” prior, regardless of what 71 is.

e Gelman, Carlin, Stern and Rubin label Lancaster’s “natural conjugate” priors
just plain “conjugate” priors, and use “natural conjugate” to refer to priors
that are in the same family as the likelihood function. Probably this is the best
usage. So our definition of “conjugate” in lecture should instead be labeled
“natural conjugate”, and Lancaster in correspondence has agreed that the
text should make this distinction.

11. A GENERAL METHOD FOR CONSTRUCTING CONFIDENCE REGIONS

e For each 6 € O, choose a test statistic T(Y, 0), where Y is the observable data.

e For each 0 choose a rejection region R(6) C ® such that P[T(Y,0) € R(0) | 6] =
Q.

e Define S(Y) ={0|T(Y,0) £ R(6)}.

e Then S(Y) is a 100(1 — «)% confidence region for 6.

12. REMARKS ON THE GENERAL METHOD

e Regions constructed this way are exact confidence regions.

e When Y is continuously distributed, it is always possible to find T(Y, 6)’s and
R(0)’s to implement this idea.

e It is generally not possible to use this idea to produce confidence regions for
individual elements of the  vector or linear combinations of them.

e There are obviously many ways to choose the T and R functions, and thus
many confidence regions, for a given « value.

13. PIVOTAL QUANTITIES

e Sometimes we can find a collection of functions T*(Y,6) with the property
that the distribution of {T*(Y,0) |8} does not depend on 6. In this case we
call T* a pivotal quantity or pivot for 6.

e Constructing confidence regions based on pivots is particularly easy: One
defines a single region R* such that P[T*(Y,6) € R] = «, and this rejection
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region defines the test used to construct the confidence region for all values
of 6. Most confidence regions actually used in practice are based on pivots.
Certain kinds of pivots also make confidence regions based on them corre-
spond to posterior probability regions with probabilities matching the confi-
dence levels under certain flat priors.
A leading special case is the SNLM, in which

@ (B—P)X'X(B—p)

— and —
o2 'l

are a pair of jointly pivotal quantities and confidence regions based on the
distribution of these statistics conditional on , ¢ turn out to coincide with
posterior probability regions with probabilities corresponding to 1 — « if the
(1/0)do dp flat prior is used.

Other cases: scale parameters in general, like « in the Gamma or ¢ in the
t distribution, allow this kind of construction, as do location parameters in
general, like y in the t distribution.

Most confidence regions in actual use are not only based on pivots, they are
based on location-scale pivots that allow this flat-prior Bayesian interpreta-
tion.

14. TESTS

Each T(Y,6), R(0) pair in our construction of a confidence region makes up
what is known as a statistical test of the null hypothesis that 6 is the true
value of the parameter. The parameter « is known as the significance level
or size of the test.

So an exact confidence region can always be interpreted as a collection of
statistical tests with significance level a.

More generally, we can consider tests of hypotheses that do not consist of a
single point in ®. For such compound hypotheses, DeGroot and Schervish
distinguish level, or significance level, and size. The null hypothesis is some
set ()g € O and the test still takes the form of a statistic T(Y) and rejection
region R. Only now it is possible that P[T(Y) € R|0] differs across 0’s in
(). The standard definitions now say that the test has significance level « if
PIT(Y) € R|6] < aforall 6 € )y, and that it has size « if it has level -y for all
¥ >«

15. POWER

The power function of a test is P[T(Y) € R | 6] considered as a function of 6
over O © (). (It could be extended to range over () also.)
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e We would like a test to have a small size and have large values of the power
function for 6 outside ().

e We would like a test to be unbiased, meaning that the infimum of P[T(Y) €
R|6] over ® & () is no smaller than the supremum over )y of the same
thing. (Here © is the set difference operator: A © B = AN B°.

16. LINEAR COMBINATIONS OF PARAMETERS

e In the SNLM with do /o prior, consider a m x k matrix R used to form m
linear combinations of .

{RIB ‘ Y, X} ~ tT*k(RBI RZﬁR/) ’ (*)
where X5 = (2'01/ (T — k))(X'X) L.
e This implies (it is not hard to show, but we are skipping the algebra) that

{(B— BYR(REgR)'R(B—P)| Y, X}

m

F(m, T —k).

e There is a completely analogous non-Bayesian result for the same pivot: same
as (*) but with the conditioning on B, ¢ instead of on Y, X.

17. CONFIDENCE SETS FOR LINEAR COMBINATIONS

e Obviously we can use this pivot to develop elliptical confidence sets for ar-
bitrary linear combinations of coefficients, or individual coefficients (where
they are equivalent to intervals based on the ¢t1_j distribution).

e Many programs, including R, report automatically what is called the F-statistic
for the equation or regression. It is the statistic we are discussing with R a
selection matrix — all zeros and ones, such that RS is the (k — 1) x 1 vector
obtained by deleting the constant term from the regression.

e What is the constant term? Most of the time, we include as the first or last
column of X a vector of ones. If we write the equation for one observation as

k
Yy =Po+ Y Xipj+er,
=i

This is equivalent to Y = X + ¢, with X = [&1 X] , with B consisting of
the k +1 B;’s.

o If this F-statistic is not large, it may imply that R = 0 is inside a standard
confidence set or credible set (some authors’ term for a set with a given pos-
terior probability). For the particular R we are considering, this means that
a parameter vector with every element zero except for the constant term is
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inside the confidence/credible set, and thus that in some sense the whole
regression is “insignificant”.



