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Asymptotics, for IV

β̂ = (Z ′X)−1Z ′Y = (Z ′X)−1Z ′Xβ + (Z ′X)−1Z ′ε (1)

∴ β̂ − β = (Z ′X)−1Z ′ε (2)

IV is not unbiased.
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β̂ = (Z ′X)−1Z ′Y = (Z ′X)−1Z ′Xβ + (Z ′X)−1Z ′ε (1)

∴ β̂ − β = (Z ′X)−1Z ′ε (2)

IV is not unbiased.

It is consistent if ΣZX = E[Z ′
jXj] is non-singular; i.e. β̂

P−−−−→
n→∞

β.

Because (1/n)Z ′X
P−→ ΣZX and (1/n)Z ′ε

P−→ E[Z ′
jε] = 0.
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Asymptotics, for IV

If Var(εj | Zj) = σ2 for all j, the CLT tells us that

1√
n
Z ′ε

D−→ N(0, σ2ΣZ) ,

where ΣZ = E[Z ′
jZj]. Therefore in that case

√
n(β̂ − β)

D−→ N(0, σ2(Σ−1
ZXΣZZ(ΣXZ)

−1) .

In practice we estimate the covarance matrix and use

β̂ ∼ N(β, s2(Z ′X)−1Z ′Z(X ′Z)−1) .
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White standard errors

If εj | Zj does not have a constant variance, We can replace σ2(Z ′Z) in
the middle of the covariance matrix expression by E[Z ′εε′Z]. Just as with
the SNLM, we can assume that E[εε′ | Z] = Ω and model Ω, in which case
we get a more efficient estimate analogous to GLS. (We omit working out
this IV analogue of GLS in detail.)

We can also, in the case where we know Ω is diagonal, use
∑

Z ′
iZiε

2
i/n

as a consistent estimate of E[Z ′εε′Z], giving us “heteroskedasticity-robust”
IV standard errors for the estimates. Stock and Watson suggest always
using these heteroskedasticity-robust standard errors, though in fact as with
GLS there is a tradeoff — if the heteroskedasticity- consistent standard
errors are nearly the same as the non-robust ones, the non-robust ones are
likely more accurate estimates. If there is instead a big difference, it is likely
that modeling heteroskedasticy would substantially improve efficiency.
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Two stage least squares

So far we have considered simple IV, where the number of instruments
matches the number of X’s and Z ′X is square and non-singular. If we
have more instruments than X’s, we need to consider how to use them
efficiently.

In the univariate case — one instrument, one X — the asymptotic
variance is σ2σ2

Z/Cov(Z,X)2. This is one over the explained sum of
squares in a regression of X on Z. So we get smaller variance the more
Z is correlated with X. When we have many Z’s, then, it seems natural
to form an instrument matrix as a linear combination of the Z’s that has
as much correlation with X as possible. This is the idea of 2SLS. When
described as two stages it works like this:
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Stage 1 Estimate θ in the regression X = Zθ + ν by OLS. (Note that
since X is n × k, this is really k separate regression equations, one for
each column of X.)

Stage 2 Form X̂ = Zθ̂ and use that as an instrument, i.e.

β̂2SLS = (X̂ ′X)−1X̂ ′Y = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′Y .

The asymptotic covariance matrix is

σ2(X ′Z(Z ′Z)−1Z ′X)−1 .
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A practical caution

Since X̂ ′X = X̂ ′X̂ (because X − X̂ is uncorrelated in the sample with
X̂ by construction), the 2SLS estimator is exactly the OLS estimate of β in
a least squares regression of Y on X̂. But the covariance matrix for β̂2SLS

as standard regression output from this “second stage” is not a consistent
estimate of the true 2SLS covariance matrix. What comes out of a standard
regression program is s2(X̂ ′X̂)−1, where s2 is an estimate of the residual
variance in a regression of y on X̂, while what is needed is an estimate of
Var(εi). This can be estimated as the sample variance of y −Xβ̂, whereas
the standard OLS output would use the sample variance of y − X̂β̂. These
can be quite different.
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