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Types of stochastic convergence

• Almost sure convergence; convergence with probability one.

• Convergence in probability.

• Convergence in mean square, or in quadratic mean, or q.m.

• Convergence in distribution.

1



Almost sure

Xn
a.s.−−−−→

n→∞
X∞ ⇔ P [Xn → X] = 1

⇔ ∀(ε > 0)P [∀(n > N) |Xn −X| < ε] −−−−→
N→∞

1

This asserts that the realized values of the Xj sequence converge in the
ordinary calculus sense to X∞, with probability one.
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In probability

Xn
P−−−−→

n→∞
X∞ ⇔ ∀(ε > 0)P [|Xn −X∞| < ε] −−−−→

n→∞
1

This asserts that the probability that Xn is near X∞ gets closer to 1 as n
increases. Clearly at least no stronger than a.s. convergence.

3



In mean square

Xn
q.m.−−−→ X∞ ⇔ E[(Xn −X∞)2] −−−−→

n→∞
0

Xn and X∞ must all have finite second moments, which is not necessary
for convergence in probability.
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In distribution

Xn
D−−−−→

n→∞
X∞ ⇔ ∀(fcontinuous, bounded)E[f(Xn)] −−−−→

n→∞
E[f(X∞)]

There is an equivalent way to state this. Let Fn(c) = P [Xn ≤ c] be the cdf
(cumulative distribution function) of Xn.

Xn
D−−−−→

n→∞
X∞ ⇔ ∀(c : F∞ continuous at c)Fn(c) −−−−→

n→∞
F∞(c)
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Examples

• You and I each flip a coin at each time t. Your coin is fair, with
probability of heads p = .5. I use an unfair coin with probably of heads
pt < .5. But every so often I change coins, bringing them closer and
closer to fair, so pt → .5 as t → ∞.
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• We generate a record of two sequences of coin tosses. You again use
a fair coin and flip it once for each t. I’m lazy, so usually I just record
your flip as if it were mine. The probability that I flip my own coin gets
smaller and smaller, converging to zero as t → ∞.
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• Same as above, but eventually I just stop flipping my coin at all, so from
then on my sequence of coin flips is the same as yours.
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• Same as above, but eventually I just stop flipping my coin at all, so from
then on my sequence of coin flips is the same as yours.

Almost sure convergence
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• Same as above, but eventually I just stop flipping my coin at all, so from
then on my sequence of coin flips is the same as yours.

Almost sure convergence

• Two rules for changing the probability that I will flip my own coin.

1. Every period there is a probability qt that I will flip my own coin.
qt → 0, but I keep qt constant until I actually flip a coin myself, and
only then switch to a lower value of qt.

2. I adjust qt every period, with qt = qt0 and q0 < .5.

The first rule generates convergence in probability, but not a.s.
convergence. The second generates a.s. convergence.
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Properties of convergence measures

Xn
a.s.−−→ X∞ ⇒ Xn

P−→ X∞

Xn
q.m.−−−→ X∞ ⇒ Xn

P−→ X∞

Xn
P−→ X∞ ⇒ Xn

D−→ X∞

Xn
P−→ X∞ and f continuous ⇒ f(Xn)

P−→ f(X∞)

C a constant, Xn
P−→ C, Yn

D−→ Y∞, f continuous ⇒ f(Xn, Yn)
D−→ f(C, Y∞)
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Application to OLS estimator

Suppose {Xt, Yt} i.i.d., E[Yt | Xt] = Xtβ, Var(Yt | Xt) = σ2,
E[X ′

tXt] = ΣX, with ΣX finite and non-singular (|ΣX| > 0). Then

i. β̂OLS
P−→ β. (OLS is consistent.)

ii.
√
n(β̂ − β)

D−→ N(0, σ2Σ−1
X ) .

9



Handling the unknown σ2 and ΣX

If we use the notation ε̂ = Y −Xβ̂ for the least squares residuals, then

s2 =
ε̂′ε̂

n− k

P−→ σ2 .

Since Xt is i.i.d. and we’ve assumed E[X ′
tXt] = ΣX is finite, the law of

large numbers tells us

X ′X

T
=

∑
tX

′
tXt

T

P−→ ΣX
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What we do in practice

This means, using the properties of convergence in probability and
distribution and the fact that all the elements of Σ−1

X are continuous
functions of ΣX, we see that we can plug in consistent estimators of ΣX

and σ2 to get √
n(β̂ − β)

D−→ N(0, s2(X ′X/n)−1)

which means that we treat β̂ as N(β, s2(X ′X)−1).

A slightly awkward point: This suggests that using s2(X ′X)−1 as the
covariance matrix is an approximation to the σ2Σ−1

X that appears in the
asymptotic distribution. But in fact, the small-sample theory of the SNLM
tells us that σ2(X ′X)−1 is the true small-sample covariance matrix (under
normality), and that σ2(ΣX · n)−1 is only an approximation.
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Bayesian interpretation of the asymptotics

Since β̂ becomes approximately N(β, s2(X ′X)−1 in large samples, and
we can see β̂ but do not know β, we can treat the approximate pdf for β̂
like a likelihood function, using its behavior as a function of β to trace out
a pdf for β under a flat prior.

This leads us to

β | β̂, s2, X ′X ∼ N(β̂, s2(X ′X)−1) .

In other words, in large samples, a Bayesian given only the second moments
of the data (not the full data set), will have approximately a posterior that
treats the distribution of β around β̂ exactly as the frequentist theory treats
the distribution of β̂ around β.
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Making probability statements about coefficients

We know that the conditional distribution of β | Y,X, σ2 under a flat
prior is N(β̂, σ2(X ′X)−1, where β̂ is the OLS estimator. We can therefore
construct a pdf for each individual coefficient βi from a normal distribution
with mean β̂i and variance σxii, where σxii is the i′th diagonal element of
σ2(X ′X)−1. As we have discussed, in fairly large samples we can just plug
in to this formula s2, the estimated residual variance, in place of σ2, the
true residual variance, with little loss of accuracy.

Standard regression output (e.g. from summary(lmout) in R) gives
coefficient estimates and estimated standard deviations. This allows
determining posterior pdf’s. The output also usually computes “significance
levels” for the coefficients by finding the probability that the absolute value
of β̂i would exceed the value observed in this sample if in fact the true

13



β were zero. The posterior probability interpretation of this “significance
level” is just that it is twice the probability in the tail of the posterior
distribution for the coefficient that lies below zero (if β̂i > 0) or above zero
(if β̂i < 0).

14



Joint statements about several coefficients

It may also be interesting to ask whether a set of coefficients might all
be zero. The traditional way to check this is with an F test. One calculates
an F or χ-squared statistic and concludes that the set of coefficients is
unlikely all to be zero if the statistic is in its α-probability upper tail, where
α is the significance level. Here is the posterior probability interpretation of
the statistic and its significance level α. We construct the level curves of the
marginal posterior pdf over the parameters being tested; they are ellipsoids
centered on the estimated value of the parameter vector. We find the level
curve on which the zero point in this space of tested parameters lies. If the
probability inside that ellipsoid is 1 − α, we call α the significance level of
the test. A diagram for the case of 2 tested coefficients is on the next slide.
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(0,0) is not in the 95% ellipsoid
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