Econ. 556b Spring 1999 Chris Sims

1. (a)

Take-Home exam answers

I was surprised that 3 out of 4 of those taking the exam missed the point
of this question. As we discussed in class and notes, Sg/T formed from
the OLS residuals is nmot the MLE of the covariance matrix of residuals for
the restricted model. One must either base test statistics on the lower right
(m—q) x (m—q) submatrix of S and Sg, or else use the full system covariance
matrix of residuals from a triangularized (or otherwise orthogonalized) system.
Since this point was discussed in detail in section 3 of “Notes on Granger
Causal Priority and Testing It”, posted April 4th, it was surprising to me
that only one person got it.

The flat-prior posterior makes the joint distribution of the VAR parame-
ters approximately Gaussian, around OLS estimates as the means and with
(S/T) @ (X'X)~! as posterior covariance matrix of residuals. (They are not
exactly Gaussian, except conditional on the true covariance matrix. But
asymptotically the randomness of ¥ about S/T becomes negligible.) This
means that the (m — ¢)gk parameters that are set to zero in the restricted
model have an approximately Gaussian posterior with a covariance matrix
that can be extracted as a submatrix of S/T ® (X'X)~!. If we use 7 to de-
note the parameters set to zero in the restricted model and 4 to denote their
OLS estimates in the unrestricted model, then the classical LR test statistic
has the form

YET, (A1)
where ¥, is the usual estimate of the asymptotic covariance matrix of 4 con-
ditional on true values, and also the usual approximation to the posterior
covariance matrix of 7. This is a number, not (once we have seen the data)
a random variable. The related random variable, which has an approximate
x2((m—1)qk) distribution quantity conditional on the data under a flat prior,
is

(v =)= (v =) - (A2)
Thus when we are told the value of the LR statistic, we can look it up in the
x? table to find out the probability of one particular set. Using 6 to denote
the whole vector of elements of {B;;(s)} and () to denote the restricted

subvector extracted from 6, the set whose probability we obtain from the
table is

{01 =20)=T1( —(0) <=7} (A3)
The probability of this set will generally not be exactly .05, since the statistic

will not be exactly at the .05 significance level. To find a set of .05 probability,
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we would extend or shrink the set by replacing the right-hand side of the
inequality in the set definition (A3) with the exact .05 level of the test.

To understand what this means (and what its limitations might be), consider
the simpler case of a regression model with a two-dimensional parameter vec-
tor 3, in which our estimates imply

v ()

If we consider a constraint on (3, we construct the region from a x?(1) statistic,
and the region, centered on (3, that has probability .05 is that above and below
the horizontal lines in the figure below.

Likelihood contours and .05 prob. region from distribution of 3,
5
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Here we are using the theory laid out in the handout on testing linear restric-
tions. The relevant formula, giving the log of the posterior odds against the
restricted space based on the Gaussian approximation, is (10) in those notes:

p(X[0)\  m- L (el
log (q(X|§f;)> + 5 log(27r) l g (|E¢|) (A5)

The first term in this expression, the log of the likelihood ratio, is % times the
x? statistic that we have been discussing.

The Bayesian asymptotics do not depend at all on whether unit roots are
present. The classical asymptotics may change drastically if unit roots are
present, but do not necessarily change. Since we did not discuss classical unit
root theory in the course, you were not required to be able to give a more
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detailed answer. Generally, if there are two blocks of variables Y and X, and
if we test (as here) a restriction that X GCP Y, special unit-root distribution
theory does not come into play if X and Y are cointegrated, so that there is
a matrix M of cointegrating vectors such that Y — M X is stationary.

(e) The accuracy of the Bayesian asymptotics can be checked by exploring the
shape of the actual likelihood to see if it matches the approximation. For
example, the height, relative to the height at the maximum, of the likelihood
along the ellipsoid in the parameter space that forms the boundary of the
flat-prior 95% probability region under the Gaussian approximation can be
checked to see it matches what is predicted by the approximation. It is not
even a meaningful question whether classical asymptotics are accurate in a
particular sample; they have nothing to say about particular samples.

2. The model specified in this problem, I am sad to say, was internally inconsistent.
Anyone who figured this out would have received full credit, but nobody did.
Though I could detect some differences in levels of understanding in the answers
to this question, I did not award points for it in the grading. I should have left y(t)
out of the model’s second equation ((5) on the exam), which would have created
the kind of simple likelihood I meant for you to consider. Below I first describe
the inconsistency, then describe a small change in the model’s specification that
removes the inconsistency, then present an answer to the question for an altered
model.

The inconsistency: substituting (3), the equation for y, into (5), the equation
for S, produces

S(t) = —=(S(t) —e(t) + pSt —=1) +v(t), (A6)
where v(S(t)) is defined by
o for S(t) <0
(8(1)) = {% NPT (A7)

If we use the notation F(S(t)) = S(t) + v(S(t)), then (A6) asserts that,
conditional on S(t — 1),

F(S(t)) ~ N(pS(t —1),02 + 7). (A8)

But F'is a function that maps the real line R into R—[vp,71). That is, F/(S(t))
can never take on any value in the half-open interval [yp,v1). When S(t) < 0,
F(S(t)) < 7o, while when S(t) > 0, F(S(t)) > 7." This means that it is in
fact impossible for F'(S(t)) to be normally distributed, contradicting (AS).
Fixups: To make the model coherent while retaining y in (5), we have to recog-
nize that it only works if S(¢) = 0 has positive probability and if in this case

!This discussion assumes that y; > 7o, as fits the interpretation of recession and normal rates
of growth. if instead v1 < 79, the model, instead of being internally inconsistent, fails to define a
determinate distribution for the observed data.
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equation (5) on the exam determines y(t), replacing for this case the original
y equation, (3) from the exam. This results in a well-defined model, for which
MCC sampling is possible. It is a rather complicated model, though, and since
no one who wrote the exam actually used this model, I won’t go through here
how to do MCC sampling for it. To show the kind of setup I meant to be
confronting you with, consider a model in which y(¢) is simply deleted from
equation (5) on the exam. This results in an easy-to-handle model.

Sampling: For the easy-to-handle model with y gone from (5), sampling from
the likelihood can proceed as follows. With the S sequence fixed, (3) and
(5) are simply a pair of regression equations with independent disturbance
terms. We can apply OLS to them separately. To make this work we must
suppose that the distribution of the initial condition S(0) does not depend on
any of the parameters of the model. Separate OLS on equation (3) amounts
to estimating o as the mean of y for recession (S(t) < 0) periods and 7, as
the mean of y over the rest of the sample. The joint posterior on the ~’s,
p, and the variances of € and v is then in the usual Normal-Inverse-Gamma
form and is easy to sample from. So the first phase of the sampling algorithm
is to draw from this simple conditional distribution of all the parameters
given the data and the S sequence. The second phase is to draw from the
conditional distribution of the S sequence given the parameters and the data.
This conditional distribution is non-standard, so drawing from it requires its
own Metropolis-Hastings component. The joint pdf for the y’s and S’s itself
is easy enough to write down:

log p ({y(t)}thl AS (t)}tT:o) %0, M, 0, 0’3)

_ q(S(O)) _ TlOgO’E - %Z (y(t> B 7(S<t>>>2

o2
t=1 e
1 ¢~ (8(1) = pS(t — 1))
—Tlogo, — 3 t; = , (A9)

where (S(t)) is the function defined in (A7). What makes the distribution
nonstandard is the appearance of S(t) as the argument of the v function in the
first term. A reasonable way to implement Metropolis sampling of S would
be to proceed sequentially through ¢ = 0,...,7. For ¢t = 0 the draw could
be from ¢, the marginal pdf for S(0), and for subsequent S(¢)’s it could be
either from N (pS(t — 1),02) (the conditional pdf for S(¢)] S(t — 1), ignoring
the information in y) or from N(p- (S(t+1)+S(t))/(1+p?),02/(1+ p?)), the
conditional distribution of S(¢)| S(t+ 1), S(t — 1). The acceptance algorithm
then follows the usual Metropolis-Hastings rule, using the actual likelihood
(A9) to form the weights.
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The overall algorithm, then, is Gibbs sampling, alternating between drawing
from the distribution of the parameters given S and y and drawing from the
distribution of S given the parameters and y. The latter part of the algorithm
requires using a Metropolis-Hastings accept /reject rule.



