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1.  Saying the residual at each t is drawn from a mixture of normals means that the p.d.f. of � EMBED Equation  ��� at each t is the sum of three normal p.d.f.’s with weights � EMBED Equation  ��� summing to one.  But this can be modeled as involving the unobservable random variable � EMBED Equation  ���, which takes on the values 1, 2, 3 with probabilities � EMBED Equation  ���, i=1, 2, 3, and with � EMBED Equation  ���.  Collecting lagged y’s into a single row vector � EMBED Equation  ��� and the coefficients in B into a single parameter matrix (,  we can rewrite (1) from the problem set as 


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �1�]�


Then the log of the joint p.d.f. of � EMBED Equation  ��� and � EMBED Equation  ��� is


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �2�]�


To form the likelihood in terms just of the parameters (not including � EMBED Equation  ���), we would have to integrate this p.d.f. over the � EMBED Equation  ��� sequences, which would give it an inconvenient, non-Gaussian form.  It is therefore convenient not to integrate out the � EMBED Equation  ���’s, but to leave them in and use Monte Carlo methods that draw jointly from a p.d.f. proportional to � gotobutton ZEqnNum921311 � ref ZEqnNum921311 \! �[2]�� (exponentiated) in the parameters and � EMBED Equation  ��� jointly.  We are not directly interested in the � EMBED Equation  ���’s, but drawing from the flat-prior posterior (the likelihood) is much easier if we draw them together with the parameters.


Conditional on a sequence � EMBED Equation  ���, each disturbance is normal, and this p.d.f. has a Gaussian shape in (.  It is not a very nice Gaussian shape, because the occurrence of different � EMBED Equation  ���’s at different observations, if they are not diagonal, prevents application of any of the usual SUR conditions that allow equation-by-equation estimation of the peak of the likelihood.  Nonetheless, it is a big Gaussian  distribution.  Its shape can be found by stacking up the data for the system, treating it as a big GLS problem with � EMBED Equation  ���observations, where n is the number of variables in y and T is the number of observations.  This will give a mean and covariance matrix for the elements of B , and it is then straightforward to draw a random B from this distribution.  


Conditional on all the other parameters and the data, the p.d.f. as a function of the � EMBED Equation  ���’s is straightforward.  The � EMBED Equation  ��� sequence is a known function of the conditioning variables.  A particular � EMBED Equation  ��� enters the log likelihood only through a single element in the sum in � gotobutton ZEqnNum141352 � ref ZEqnNum141352 \! �[2]��, the term indexed by t.  This means that the p.d.f. as a function of � EMBED Equation  ��� has the form of independent draws for the elements of the sequence.  There are three possible values of this term, corresponding to the three possible values of � EMBED Equation  ���, so to draw from this conditional distribution for � EMBED Equation  ��� requires just a simple draw from a three-point discrete distribution at each t.  


Conditional on all the other parameters, the data, and the � EMBED Equation  ��� sequence, the three covariance matrices � EMBED Equation  ���, i=1, 2, 3 enter the joint p.d.f. through three separate components of the sum in � gotobutton ZEqnNum319069 � ref ZEqnNum319069 \! �[2]��.  For � EMBED Equation  ���, for example, the corresponding component of � gotobutton ZEqnNum319069 � ref ZEqnNum319069 \! �[2]�� is


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �3�]�


where � EMBED Equation  ��� is the number of observations in � EMBED Equation  ���, the set of t values for which � EMBED Equation  ���.  Note that as a function of � EMBED Equation  ��� this is in the form of a standard inverse-Wishart p.d.f.  One forms the residual covariance matrix for each of the three subsamples � EMBED Equation  ���, then draws a value for the corresponding � EMBED Equation  ��� from the associated inverse-Wishart.  (See Gelman, Carlin, Stern and Rubin, p.474-5 and 481, for description of the inverse-Wishart).  


Looking again at � gotobutton ZEqnNum576844 � ref ZEqnNum576844 \! �[3]�� we can see that the p.d.f. as a function of the (’s is proportional simply to 


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �4�]�


This is a three-dimensional Dirichlet p.d.f. (GCSR p. 476-7, 481), which is straightforward to draw from.  


Thus we have the possibility of an exact Gibbs sampling scheme, drawing in turn from the conditional posteriors for (, � EMBED Equation  ���, � EMBED Equation  ���, � EMBED Equation  ���.  


All of this discussion has assumed we would use the conditional p.d.f. of the y’s given initial observations.  If we assume stationarity, there would be an implied marginal distribution for the initial y’s we could use.  However, this marginal distribution is extremely messy analytically.  Since Markov-chain Monte Carlo methods assume that the p.d.f. of the data can be calculated for given parameter values at given data points, they will not help with this situation.  


2. Asymptotically, for the stationary case (� EMBED Equation  ���), the usual OLS formulas for mean and variance of the OLS estimators and the usual Gaussian distribution for the estimators are justified.  So when the model is true, we can write asymptotically


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �5�]�


Also, for the stationary case the error in � EMBED Equation  ��� is negligibly correlated with the last observation in the sample, so the distribution of � EMBED Equation  ��� conditional on � EMBED Equation  ��� is asymptotically just the marginal asymptotic distribution of � EMBED Equation  ��� scaled by � EMBED Equation  ���.  Note that the mean-squared error of two-step-ahead forecast in this “true model” case is dominated by the variance of the forecast based on knowledge of the true (, which is � EMBED Equation  ���.  The component due to error in estimation of ( declines at the rate � EMBED Equation  ���.  The asymptotic distribution of  � EMBED Equation  ��� is centered at � EMBED Equation  ���, with variance (after scaling by � EMBED Equation  ���) 


	� EMBED Equation  ��� = � EMBED Equation  ���.  	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �6�]�


If we estimate using OLS on (3) from the problem statement, the error in the coefficient estimate is


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �7�]�


The denominator of this expression, when normalized by � EMBED Equation  ���, converges in probability to the constant � EMBED Equation  ���, while the numerator, being a sum of zero-mean, finite-variance, stationary random variables, converges, when normalized by � EMBED Equation  ���, to a zero-mean normal distribution.  There is a standard result, which I realized as I prepared this answer sheet might not have been covered in the prerequisites for this course, that time averages of a zero-mean, finite-variance stationary process x with autocovariance function � EMBED Equation  ��� converge in distribution, when normalized by � EMBED Equation  ���, to � EMBED Equation  ���, assuming that � EMBED Equation  ��� is absolutely summable.  The numerator of � gotobutton ZEqnNum538494 � ref ZEqnNum538494 \! �[7]�� has ACF � EMBED Equation  ��� for � EMBED Equation  ���, since the (’s are zero-mean and i.i.d.  It has variance � EMBED Equation  ��� and � EMBED Equation  ���.  Therefore the ratio in � gotobutton ZEqnNum547269 � ref ZEqnNum547269 \! �[7]��, normalized by � EMBED Equation  ���, converges to a � EMBED Equation  ���.  (To see why, be sure you remember that one sums R over both positive and negative values of its argument.)  It is not hard to check then that the asymptotic variance of this estimator, � EMBED Equation  ���, must exceed that of the previous estimator based on a one-step-ahead regression, as given in � gotobutton ZEqnNum946592 � ref ZEqnNum946592 \! �[6]��.  In fact, the difference always exceeds 15/16, for any value of (.  But remember that the unnormalized difference is shrinking at rate � EMBED Equation  ��� and becomes a negligible part of the overall MSE of forecast as � EMBED Equation  ���.  


For the other case, where the AR model is false, using the one-step-ahead OLS estimate produces an inconsistent estimator of the coefficient in the best linear predictor of � EMBED Equation  ��� based on � EMBED Equation  ���.  Thus the difference between the two estimators does not dwindle as � EMBED Equation  ���.  This is the main point of this question, and had been discussed in class.  On an exam, recognizing this point and giving a quick argument as to why it’s true in this case would have given you most of the credit for the question.  But here we proceed with the details.


If y is drawn from a first-order MA of the form


	� EMBED Equation  ���,	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �8�]�


then the best linear predictor of y(t) based on � EMBED Equation  ��� is just zero, since y is uncorrelated with values of itself lagged by more than one period, and its MSE is � EMBED Equation  ���.  The best one-step ahead linear predictor for � EMBED Equation  ��� based on � EMBED Equation  ��� alone is� EMBED Equation  ���, with


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �9�]�


If we estimate a regression of � EMBED Equation  ��� on � EMBED Equation  ��� by OLS, we will obtain a consistent estimate of (, and the resulting two-step ahead prediction error will be, in large samples 


	� EMBED Equation  ��� ,	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �10�]�


which is clearly larger than what is obtained with the OLS regression on � EMBED Equation  ���, except when � EMBED Equation  ���.  The ratio of MSE’s is worst when � EMBED Equation  ��� is at its upper limit of 1, when the 1-step-ahead regression gives an MSE 1.25 times as large as the 2-step-ahead regression.


3. i) The money neutrality proposition, in a log-linear system, is a single system-wide dummy observation.  It will be a scalar multiple of an observation in which all nominal variables are set to one and all real variables are set to zero.  When multiplied by the coefficients, this artificial data vector implies exactly the neutrality constraint.  Since the likelihood itself has the desired Kronecker structure, adding this pseudo-observation will preserve that structure.  Note that we will have to accept that the variance of the disturbance is the same in all equations for this dummy observation, so we cannot be more sure of the neutrality restriction in some equations than in others.  


ii) A restriction that the sum of coefficients on variable j in equation i be zero is not in the form of a system-wide dummy observation, as it involves only coefficients in one equation.  However, as the Sims-Zha article points out, differences across equations in the right-hand-side variable matrix, while destroying the strict Kronecker structure, do still allow equation-by-equation estimation when the model is formulated to imply a diagonal covariance matrix of disturbances.  The requirement is just that block diagonality of the covariance matrix in the posterior for � EMBED Equation  ��� be preserved.  Since the long-run restriction we are discussing here is a linear combination of coefficients in a single equation,  it can be expressed by adding a dummy observation to the data matrix for that equation, and this will preserve block-diagonality.


Note that most existing empirical work using “long run restrictions” on VAR’s has used 2-variable models, where the restriction that an off-diagonal element of the AR operator have coefficients summing to zero is equivalent to the restriction that the corresponding element of the MA operator have coefficients summing to zero.  But in systems of dimension larger than 2 this correspondence no longer holds.  Often a long-run restriction is more reasonably formulated as, say, “monetary policy shocks have no long run effects on Y” rather than as “a permanent change in M will have no long run effect on Y”.  The latter is a restriction on the AR, the former a restriction on the MA.  Linear restrictions on the MA are in general complicated nonlinear restrictions on the AR, involving all equations even when the MA restriction involves only one i and j.  
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