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Preliminaries

If we have a set (possibly countably infinite) of random variables {Xi},
the set of all finite linear combinations of them forms a linear space.

We can define an inner product, and thus a norm on that space as
〈X,Y 〉 = Cov(X,Y ). Then defining the distance between X and Y as
‖X − Y ‖, our space is a metric space. We can complete the metric
space by extending it to include all limits of Cauchy sequences. That is, if
{Zi, i = 1, . . . ,∞} has the property that ‖Zm − Zn‖ → ∞ as m,n → ∞,
then Z∞ = limi→∞Zi is in the space.
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Projections

Suppose G is a complete linear subspace of H, with a Hilbert space
(i.e., innerproduct and norm defined) structure. We can define the operator
E by

E [X | H] = Z ∈ H that minimizes ‖X − Z‖ .
It is not hard to prove that such a Z must always exist and is unique.

If G1 and G2 are two subspaces of H such that 〈X,Y 〉 = 0 whenever
X ∈ G1 and Y ∈ G2, we say that G1 and G2 are orthogonal, or G1 ⊥ G2 .
In that case it is not hard to show that E [X | G1, G2] = E [X | G1] + E [X |
G2].

It is always true that X − E [X | G] ⊥ G.
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A finite variance stochastic process and its predictive
projections

Now let Yt, t = −∞, . . . ,∞ be a vector valued stochastic process. That
is, each Yt is an n-dimensional random vector, and the probability law of
the stochastic process specifies mutually consistent joint distributions for
any finite collection of the {Yt} variables.

Let Ht be the complete metric space generated by {Ys, s ≤ t}.

We can always project Yt on Ht−1 and express the gap between the two
as εt = Yt − E [Yt | Ht−1.

εt is the innovation in Yt.
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Recursive projections, Wold representation
Ht for any t is the same as the space spanned by εt, Ht−1. (This is

obvious if you think about the definitions.) Therefore we can write

yt = εt + E [yt | εt−1] + E [yt | Ht−2] = εt +A1εt−1 + E [yt | Ht−2] .

The A1 is a square matrix of coefficients. Since εt is of dimension n the
space it spans is just the space of linear combinations of elements of the εt
vector, so each element of the E [Yt | εt−1] vector is a linear combination of
elements of εt−1, given by a row of A1.

Repeating this T times, we get

yt =

T−1∑
s=0

Asεt−s + E [Yt | Ht−T ] = ỹTt + ȳTt .
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Taking limits

Var(ỹTt ) is increasing in T and is bounded above by Var(yt).. (These
are matrices, so we mean by “increasing” that their dilfferences are positive
semi-definite, which implies their diagonal elements are non-negative.) It is
therefore a Cauchy sequence and has a limit we call simply ỹt. This is the
linearly regular piece of yt.

Var(ȳTt ) is decreasing in T and bounded below by zero, so it too is
Cauchy and has a limit, which we call ȳt.

Note that ȳt is in Ht−T for every T , so E [ȳt | Ht−T ] = ȳt, for every T .
In other words, ȳt can be forecast arbitrarily well from data on ys before
time t− T , no matter how far back in the past these data are. So we call
this part the linearly deterministic part.
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Stationarity

If the y process is stationary, meaning the joint distribution of
{X1, . . . , Xm} is the same as that of {Xs+1, . . . , Xs+m} for any s, no
matter what m we start with, then our decomposition above produces the
same As sequence, no matter what t we pick for yt. Furthermore ỹt, ȳt,
and εt will then also be stationary.

A stationary process is called linearly regular if its linearly deterministic
component is zero. It is called linearly deterministic if its linearly regular
component is zero. (For a non-stationary finite variance process, we can do
the same decomposition at any t, but the component processes could have
variance zero for some dates and not for others.)

6



Examples of LR and LD processes

LR stationary processes: i.i.d. N(0, I); stationary AR(1) (E [yt | Ht−1] =
ρyt−1,Var εt constant, |ρ| < 1)

Examples of LD stationary processes: yt = sin(t + θ), θ ∼ U(0, 2π);
yt ∼ N(0, 1), yt ≡ yt−1; Cov(yt, yt−s) = sin(πs/s)

Note that for the first LD example, making θ fixed instead of random,
or giving it some other distribution, makes the process non-stationary. This
despite the fact that there is no way to tell from observing the time path of
yt whether θ was fixed or random. The third example is one where perfect
prediction is not possible with any finite set of past data, but prediction
error goes to zero as the amount of past data used goes to infinity.
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Connection to ergodicity

A stationary ergodic process Xt is one such that for any function f
such that E[f(Xt)] is well defined,∑T

t=1 f(Xt)

T

a.s.−−−−→
T→∞

E[f(Xt)] .

One is tempted to think of linear regularity as equivalent to ergodicity, but
they are not quite the same.

Xt ≡ Xt−1, P [Xt = 1] = .5, P [Xt = 0] = .5 not ergodic, LD

Xt = −Xt−1, P [Xt = 1] = .5, P [Xt = −1] = .5 ergodic, LD

Xt | σ2 ∼ N(0, σ2), i.i.d, P [σ2 = 1] = .5, P [σ2 = 2] = .5 LR, not ergodic
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