
SIMS MACRO GENERAL EXAM QUESTION

Suppose we have data {y1, . . . , yT} from a stochastic process that we know is the sum
of two independent first order autoregressive underlying processes. That is

xt = ρxt−1 + εt

zt = αzt−1 + νt

yt = xt + zt .

Assume |α| ≤ 1 and |ρ| ≤ 1, ε and ν i.i.d. normal and independent of each other, and
with unknown variances σ2

ε and σ2
ν .

(a) From data on y alone, can we estimate the four unknown parameters ρ, α, σ2
ε and

σ2
ν consistently? Are there particular parameter values that create identification

problems?
The autocovariance function of y will be the sum of the two ACF’s for x and y,

therefore of the form (using the usual abuse of notation in which the ACF is represented
as the coefficients of a polynomial in the lag operator)

σ2
ν (1 + ρ2) + σ2

ε (1 + α2)− (σ2
ν ρ + σ2

ε α)(L + L−1)

(1 + ρ2 − ρ(L + L−1))(1 + α2 − α(L + L−1))
.

Because the numerator is second order and symmetric in L and L−1, while the denom-
inator is 4th order, and also symmetric in L and L−1, this is the ACF of an ARMA(2,1),
i.e. second-order in its autoregressive component and first order in its MA component.
So long as there is no cancellation between numerator and denominator, the coeffi-
cients of an ARMA can be estimated consistently. Since the ACF denominator has
two roots on or outside the unit circle, they are the the roots of the AR operator in the
MA process, and they can be estimated consistently (even if one or both are one).
The numerator of the ACF has two coefficients, the constant and the coefficient on
(L + L−1). With ρ and α determined by the denominator, this gives enough equations,
at least, to determine σ2

ε and σ2
ν . A really thorough answer might have checked that the

linear mapping between the numerator ACF coefficients and the σ2 parameters was
non-singular. The mapping is[

1 + ρ2 1 + α2

−ρ −α

] [
σ2

ν

σ2
ε

]
=

[
c0
c1

]
,

where c0 and c1 are the two numerator ACF coefficients. It is easy to see that the left-
hand side coefficient matrix is singular if ρ = α, and not too hard to show (solving a
quadratic equation) that it is singular only in that case. So the whole model is identified
unless ρ = α. When ρ = α the y process is just an AR(1) with root ρ, so the relative
contributions of the σ2

ε and σ2
ν components of residual variance can’t be identified.
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We know that ARMA models generally can have identification problems from root
cancellation. Could that happen here? That would require that the numerator of the
ACF of y have a root that matches ρ or α. But the numerator polynomial is the weighted
sum of two polynomials, one that has ρ as a root and one that has α as a root. That
means the whole numerator can’t have either ρ or α as a root, unless, again, ρ = α.

(b) Can every ARMA(2,1) process be represented as such a sum of independent AR1’s?
Explain your answer.

Probably the easiest counterexample comes from the fact that the denominator of an
ARMA(2,1) could have a pair of complex roots, while no real-valued univariate AR(1)
can have a complex root.

(c) Describe a procedure for Bayesian sampling from the posterior distribution of the
four parameters given data on y alone. Consider first the case where it is known
that |ρ| and |α| are less than one, then the case where it is possible that one or both
of these parameters is one. Include discussion of what might be a reasonable prior
and whether inference is likely to be sensitive to the prior.

In the stationary case, one approach would be to use the ACF to populate a covari-
ance matrix Σ for y and then form the standard Gaussian log likelihood

−1
2 |Σ| −

1
2~y
′Σ−1~y .

This should form a well-behaved posterior density, and one could use, if no problem-
specific prior information was available, flat priors on (-1,1) for α and ρ and, for example,
flat priors on the logs of the σ2 parameters. One would maximize the likelihood to
get an initial estimate of the parameters, use the inverse second derivative matrix of
the log likelihood, multiplied by about .25, as minus the covariance matrix of a jump
distribution, and apply random-walk Metropolis posterior simulation.

One could also treat this as a state-space model with yt = xt + zt as the observation
equation and the two autoregressive equations as the plant equations. In the stationary
case again it would be reasonable to treat the initial values of x and z as drawn from
their stationary joint distribution, with the same priors discussed above. The Kalman
filter could then be used to evaluate likelihood for any given set of parameter values.
MCMC calculations would work as above.

When one or both roots might be one, the main difference is that the initial conditions
can no longer be given the (nonexistent) stationary marginal distribution. Conditioning
on observed initial conditions, which is possible but not usually desirable in ordinary AR
models, is not much help here, since the z and x initial states are still uncertain given
the observed initial y. Subject matter considerations would be important here, but
one approach that could work is to give the intitial x1 z1 values a N(0, diag(σ2

x , σ2
z ))

distribution, with σ2
x and σ2

z both large and fixed (i.e. not estimated). However this
would create the common problem of allowing explanation of low frequency patterns
in the data as predictable from initial conditions. So it would need to be combined with
some prior guarding against this, e.g. a “Minnesota” dummy observations prior.


