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Outline
|. The difference between Bayesian and non-Bayesian inference.
ll. Confidence sets and confidence intervals. Why?
lll. Bayesian interpretation of frequentist data analysis.

IV. A case where Bayesian and frequentist approaches seem aligned:
SNLM



Bayesian Inference is a Way of Thinking, Not a Basket of
“Methods”™

Frequentist inference makes only pre-sample probability assertions.

— A 95% confidence interval contains the true parameter value with
probability .95 only before one has seen the data. After the data has
been seen, the probability is zero or one.

— Yet confidence intervals are universally interpreted in practice as
guides to post-sample uncertainty.

— They often are reasonable guides, but only because they often are
close to posterior probability intervals that would emerge from a
Bayesian analysis.



e People want guides to uncertainty as an aid to decision-making. They
want to characterize uncertainty about parameter values, given the
sample that has actually been observed. That it aims to help with this is
the distinguishing characteristic of Bayesian inference.



Abstract decision theory

Unknown state S taking values in (). We choose ¢ from a set A. Payoff
is U(J,S).

Admissible ¢: There is no other ' € A such that U(¢',S) > U(J,S)
for all S.

Bayes decision rule ¢*: maximizes Ep|U(J,S)] over 6 for some
probability distribution P over ().



The complete class theorem

See Ferguson (1967)

Under fairly general conditions, every admissible decision procedure is
Bayes.

This is, as mathematics, almost the same as the result that every
efficient allocation in general equilibrium corresponds to a competitive
equilibrium.

Both are “separating hyperplanes” results, with the hyperplane defined
by prices in general equilibrium and by probabilities in the complete class
theorem.



A two-state graphical example



prior and model

Suppose we observe an animal dashing into a hole underneath a garden
shed, and then note that there is no particularly bad odor around the hole.
We are sure it is a woodchuck or a skunk.

Before we made these observations, our probability distribution on a
randomly occuring animal in our back yard was .5 on woodchuck and .5 on
skunk. This was our prior distribution.

Conditional on the animal being a woodchuck, we believe the probability
that there would be odor around the burrow (O = 1) is .3, and the probability
that the animal would run away fast (R = 1) is .7.

Conditional on the animal being a skunk, we believe P[O = 1 |
skunk] = .7 and P[R =1 | skunk] = .3



We think these observations are independent.



Tables of probabilities

Conditional probablities of observations, given woodchuck and given

skunk.

Woodchuck

O=0 0O=1
.09
21

21
49

Skunk
O=0 0=1
21 49
.09 21



Joint distribution of parameters and data, posteior
distribution

Therefore, the probability of what we saw is P[O = 0and R = 1 |
woodchuck] = .49 and P[O = 0and R = 1 | skunk] = .09. To get the
unconditional probabilities of these two events we multiply them by the prior
probabilities of the parameters, which in this case is .5 for each of them.

Therefore the conditional probability of the animal being a woodchuck
given our observations is .49/(.49+.09) =.845.
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Confidence sets?

Is this also an 84.5% confidence set for the animal’s species?

No, for two reasons. A confidence set is a random set that varies with
the observed data. We can’t determine whether this set {woodchuck}
Is the value of a confidence set without specifying how the set would
vary if we had made other observations. But besides that, there is no

necessary connection between Bayesian posterior probabilities for intervals
and confidence levels attached to them.
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Constructing a confidence set

For example, we might specify that when we see R = 0,0 = 1
our confidence set is just {skunk}, that when we see R = 1,0 = 0
it is {woodchuck}, and that in the other two cases (where our posterior
probabilities would be .5 on each) it is {woodchuck,skunk}. This would be a
90% confidence set (.49+.21+.21), though it would often leave us asserting
with “90 per cent confidence” that the animal is either a woodchuck or
skunk, even though we are quite sure that it is either one or the other.
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Effect of a different prior

Our Bayesian calculations were based on the assumption that
woodchucks and skunks are equally likely. If we knew before our
observations that woodchucks are much more common than skunks, say 10
times more common, our marginal probability would put probability 10/11 on
woodchuck. Then the probability of our R = 1,0 = 0 observation is .49 -
10/11 conditional on woodchuck, .09 - 1/11 on skunk. Our observations
would therefore move us from a 10/11=.909 probability on woodchuck to
4.9/(4.9+.09) = .982.

If instead we had seen R = 0, O = 1, the evidence would have shifted
us from .909 probability on woodchuck to .049/(.049 + .09)=.353,
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Model, parameters, prior, likelihood

This framework is not essential to Bayesian decision theory, but it is
nearly universal in empirical work.

There are some unknown objects we label “parameters”, in a vector B.
There is a conditional distribution of observable data y given B, p(y | B).
The function p(- | -) is the model. Frequentists and Bayesians agree on
this setup. They also agree on calling p(y | ), as a function of S with y
fixed at the observed value, the likelihood function.

The formal difference: Bayesians treat y as non-random once it has
been observed, but treat f as random (since it is unknown) both before
and after y has been observed. Frequentists persist in making probability
statements about y and functions of y (like estimators) even after y has
been observed.
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Bayes’ Rule

With a pdf 7r() describing uncertaintly about S before y has been
observed (this is the prior pdf), The joint distribution of y, 5 has pdf
77(B)p(y | B). Bayes rule then uses this to calculate the conditional density

of B | y via
~_ mBply|B)
9B [ y) = , NAB'
J(B)p(y | B')dp
Bayes'’ rule is math; not controversial. What bothers frequentists is the need
for 7t and for treating the fixed object 8 as “random”.
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Is the difference that Bayesian methods are subjective?

e No.

e The objective aspect of Bayesian inference is the set of rules for

transforming an initial distribution into an updated distribution conditional
on observations. Bayesian thinking makes it clear that for decision-
making, pre-sample beliefs are therefore in general important.

But most of what econometricians do is not decision-making. It is
reporting of data-analysis for an audience that is likely to have diverse
initial beliefs. =

In such a situation, as was pointed out long ago by Hildreth (1963) and
Savage (1977, p.14-15), the task is to present useful information about
the shape of the likelihood.
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How to characterize the likelihood

Present its maximum.

Present a local approximation to it based on a second-order Taylor
expansion of its log. (Standard MLE asymptotics.)

Plot it, if the dimension is low.

If the dimension is high, present slices of it, marginalizations of it, and
implied expected values of functions of the parameter. The functions you
choose might be chosen in the light of possible decision applications.
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e The marginalization is often more useful if a simple, transparent prior
Is used to downweight regions of the parameter space that are widely
agreed to be uninteresting.

18



HPD sets, marginal sets, frequentist problems with
multivariate cases
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Confidence set simple example number 1

B known to lie in (0,2)
95% confidence interval for B is (X — .95, X + .95)

Can truncate to (0,2) interval or not — it’s still a 95% interval.
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Example 1, cont.

e Bayesian with U(0,2) prior has 95% posterior probability (“credibility”)
interval that is generally a subset of the intersection of the X £ 1 interval
with (0,2), with the subset 95% of the width of the interval.

e Frequentist intervals are simply the intersection of X £ .95 with (0,2).
They are wider than Bayesian intervals for X in (0,2), but narrower for X
values outside that range, and in fact simply vanish for X values outside
(—.95,2.95).
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Are narrow confidence intervals good or bad?

e A 95% confidence interval is always a collection of all points that fail to
be rejected in a 5% significance level test.

e A completely empty confidence interval, as in example 1 above, is
therefore sometimes interpreted as implying “rejection of the model”.

e As in example 1, an empty interval is approached as a continuous limit
by very narrow intervals, yet very narrow intervals are usually interpreted
as implying very precise inference.
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Confidence set simple example number 2
X=pB+¢e~e“on (0,00).
likelihood: e=*TF for B € (—o0, X)
Bayesian credible sets show reversed asymmetry
contrast with naive (but commonly applied) bootstrap, which would
produce an interval entirely concentrated on values of B above By g =
X, which are impossible.
(naive parametric bootstrap: Find an estimator B Simulate draws from

X | B, take the 2.5% tails of this distribution as the 95% confidence
interval.)
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Confidence set simple example number 3

e Y ~ N(B,1); we are interested in g(B), where g is nonlinear and
monotone, but unknown.

e We observe not Y, but X = g(Y).
e We have a maximum likelihood estimator § for g(f).

e |f we could observe Y, a natural confidence and credible interval for
B would be Y £ 1.96. If we also knew g, we could then use (g(Y —
1.96),¢(Y +1.96)) as an excellent confidence and credible interval.
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e Using the naive bootstrap here, if we base it on an estimator ¢
asymptotically equivalent to the MLE, gives exactly the natural interval.

e S0, without an analysis of likelihood, there is no answer as to whether
the naive bootstrap gives reasonable results.
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Mueller-Norets bettable confidence intervals

e If not bettable from either side, they’re Bayesian for some prior.

e If only not bettable against, they exist, and are expanded versions of
Bayesian posterior probability intervals.
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Bayesian interpretation of frequentist asymptotics

e A common case: VT(Br — B) | 6 —— N(0,X)

T—o0

e Under mild regularity conditions, this implies \/T(B — Br) | Br %
—500
N(0,%)

e Kwan (1998) presents this standard case (though his main theorem does
not make strong enough assumptions to deliver his result). Kim (2002)
extended the results beyond the v/T normalization case and thereby
covered time series regression with unit roots.
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SNLM

The SNLM often denoted by the equation Y = Xp + ¢, asserts the
following conditional pdf for the vector of Y data conditional on the matrix of
X data and on the parameters f3, o°:

pLY | X )= g(Y—Xp;o®l) = (271) /%0 Texp (<Y — XP)'(Y - Xﬁ))

ol Iy 202

The most common framework for Bayesian analysis of this model asserts
a prior that is flat in B and log o or logo?, i.e. do/o or do?/c*. We will
assume the prior has the form do /o, then discuss how the results depend
on p.
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Marginal for o2

We let u(f) = Y — XB and denote the least squares estimate as
B = (X’X)"'X'Y. Also # = u(B). Then the posterior can be written,
by multiplying the likelihood above by ¢~ and rearranging, as proportional
to

TP exp <_ + (B~ B)X'X(B— B)) 18

20?2

Al A

o g~ TPk |X’X\_% exp (—%) ¢(B—B;*(X'X) 1) dBdo

071 ~
o4 Zexp (00 [x0X| g~ B (X'X) ) a5,

where v = 1/02.
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Integrating this expression w.r.t. § and setting « = '11/2 gives us an
expression proportional to

Al A

'
o T+p—k=3)/2 exp <_TU> 4o o g (THP—k=1)/2)(T+p—k=3)/2,—av 3,

which is a standard I'((T +p —k —1)/2,a) pdf.

Because it is v = 1/¢? that has the T distribution, we say that ¢?
itself has an inverse-gamma distribution. Since a I'(n/2,1) variable,
multiplied by 2, is a x*(n) random variable, some prefer to say that /i1 /o
has a x*(T — k) distribution, and thus that > has an inverse-chi-squared
distribution.
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Marginal on S

Start with the same rearrangement of the likelihood in terms of v and B,
and rewrite it as

o(THP=3)/2 exp (—%u(ﬁ)’u(ﬁ)v) dvdp.

As a function of v, this is proportional to a standard F((T+ p —
1)/2,u(B)'u(p)/2) pdf, but here there is a missing normalization factor
that depends on . When we integrate with respect to v, therefore, we
arrive at

/ —(T+p-1)/2 AVt Coay (T2
(u(ﬁ)zuw)) B o (1 L (B=BXX(p ﬁ)) 1.

'
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This is proportional to what is known as a multivariate t, (0, (2'11) /n) pdf,
where n = T + p — k — 1 is the degrees of freedom. It makes each element
B; of B an ordinary univariate t,(5;, s3), where s3 = s*(X'X);" and s> =
1'ii/n. Thus the statistics computed from the data can be analyzed with
the same tables of distributions from either a Bayesian or non-Bayesian
perspective.
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Breaks

e Suppose we have a model specifying Y; is i.i.d. with a pdf f(y;; 1), and
with p, taking on just two values, p; = p for t < t%, p, = jifor t > t*.

e The pdf of the full sample {Y3,...,Yr} therefore depends on the three
parameters, W, t*.

e If f has a form that is easily integrated over u; and we choose a prior
7t(u, i) that is conjugate to f (meaning it has the same form as the
likelihood), then the posterior marginal pdf for t* under a flat prior on t*
is easy to calculate: for each possible value of t*, integrate the posterior
over u, i.
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e The plot of this integrated likelihood as a function of t* gives an easily
interpreted characterization of uncertainty about the break date.

e Frequentist inference about the break date has to be based on
asymptotic theory, and has no intepretation for any observed
complications (like multiple local peaks, or narrow peaks) in the global
shape of the likelihood.
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Model comparison

Can be thought of as just estimating a discrete parameter: y ~ f(vy |
0,m),withf € R, m € Z.

Then apply Bayes rule and marginalization to get posterior on m:
pm | y) o< [ f(y | 6,m)do.

The rhs is the Bayes factor for the model.

This is the right way to compare models in principle, but it can be
misleading if the discrete parameter arises as an approximation to an
underlying continuous range of uncertainty — as we’ll discuss later.
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Simple examples of model comparison, vs. “testing”
models

Test HO : X ~ N(0,1). “reject” if | X| too big.
vs. what? HA : X ~ N(0,2)? N(0,.5)?

The classic frequentist testing literature emphasized that tests must
always be constructed with the alternative hypothesis in mind. There
IS no such thing as a meaningful test that requires no specification of an
alternative.

Posterior odds vs. 5% test for N(0,1) vs. N(0,2).

N(0,1) vs. N(2,1), N(u,1)? Need for prior.
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The stopping rule paradox

e Boy preference birth ratio example
e Sampling to significance example

e Posterior distribution vs. test outcome
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