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1. THE MINNESOTA PRIOR: NOTATION

y(t) = c +
k

∑
s=1

Bsy(t− s) + ε(t)

with data for t = 1, . . . , T and ε(t) | {y(t− s), s ≥ 1; B, c, Σ} ∼ N(0, Σ).

2. MN PRIOR: SINGLE-UNIT-ROOT PRIOR

We introduce data for the artificial date t∗ in which

y(t∗)
n×1

= y(t∗ − 1) = . . . = y(t∗ − k) = ȳ
n×1

λ

and the vector of 1’s that corresponds to the constant term in the data matrix is set to
λ in the t∗ observation. The vector ȳ is usually set to the sample mean of the initial
conditions, i.e.

ȳ =
1
k

k

∑
s=1

y(1− k) .

3. REGRESSION EQUATION FORM

ȳλ =
( k

∑
s=1

Bs

)
ȳλ + cλ + ε(t∗)

(I − B(1))ȳ = c + ε(t∗) .

Thus the prior is centered on a part of the parameter space where either c = 0 and
the system contains a unit root with ȳ as its eigenvector, or c 6= 0, y is stationary, and
y(0) is close to the model’s implied population mean.

4. CONNECTING BELIEFS ABOUT c AND B

One may want to favor the unit-root part of this region. Can do so by omitting
the “constant” from the dummy observation, by adding a dummy observation that
asserts a prior directly on c, by adding a dummy observation that omits the constant
in addition to the one that includes it, or by including the multiple-unit-root dummy
observations.

It is a good property of the single-unit-root dummy that it makes beliefs about c
connect to beliefs about the presence of non-stationarity.
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Unit roots convert constants into polynomial trends.

5. MN PRIOR: MULTIPLE UNIT ROOTS

y(t∗j ) =




0
...
0

ȳjλ
0
...
0




= y(t∗j − 1) = . . . = y(t∗j − k) ,

with the ȳj in the bracketed vector occurring in the j’th position, and the column of
the data matrix corresponding to c set to 0.

6. REGRESSION EQUATION FORM

This j’th dummy observation reads, for the j’th equation,

λȳj = ∑
s

Bjjsȳjλ + ε j(t∗j )

and for equation k 6= j,
0 = ∑

s
Bkjsȳj + εk(t∗j ) .

It is easy to see that this prior favors B’s whose off-diagonal elements are small, and
also B’s that are close to putting a unit root in the Bjj(L) polynomial for each j.

7. MN PRIOR: THE ORIGINAL

The original Minnesota Prior postulates a separate set of dummy observations for
each equation, implementing a prior that specifies independent distributions for all
coefficients, with the coefficient Bjks having mean 0 unless j = k and s = 1, in which

case the mean is 1, and variance π−1
1 π

1−δ(j,k)
2 s−π3 , where δ(j, k) is a function equal to

1 if j = k and 0 otherwise. With π2 < 1, this prior specifies that coefficients on own
lags (Bjj(s), s = 1, . . . , k) are likely to be larger in absolute value than coefficients on
other variables, and with π3 > 0, it specifies that coefficients on more distant lags
are likely to be smaller.

The difference in dummy observations across equations implies that equation-by-
equation estimation is not ML, and this fact was ignored in the early literature. If we
omit the π2 term (that is, set it to 1), then own lag coefficients and cross-variable co-
efficients are treated symmetrically, and the prior can be implemented with system-
wide dummy observations.
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8. SYSTEM DUMMY OBSERVATIONS FOR π2 = 1 MN PRIOR

If t∗ks is the artificial date for the dummy observation applying to the s’th lag of the
k’th variable, one of these dummy observations has the form

y(t∗k1) =




0
...
0

π1σk
0
...
0




= y(t∗k1 − 1) , y(t∗ks − s) =




0
...
0

π1sπ3σk
0
...
0




,(1)

y(t∗ks − v) = 0 for v 6= s > 1 and for v > s = 1 .(2)

9. SETTING σk

The parameter σk is a measure of the degree of variability in the k’th variable. It
has most commonly, again somewhat inconsistently, been set by estimating a low-
order univariate AR regression for each variable and taking σk to be the standard
deviation of the residual of that regression. It could also be set as the sample stan-
dard deviation of the initial conditions for each variable, or on the basis of rough a
priori reasoning about the likely scale of variation in each variable. Usually only the
order of magnitude matters.


