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The Setup

• A space Ω = {ω1, . . . , ωn} of possible “states of the world”.

• A set Φ of possible actions, or decisions, φ ∈ Φ.

• Each φ implies a pattern of “losses” across the different values of ωi,
and since these implied losses are the only aspects of φ we will be
concerned with, we will think of Φ as a set of functions that map Ω
into the real line.
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Example

ωr : rain

ωc : clear

φu : carry umbrella

φr : carry plastic raincoat

φn : carry no raingear

ωr ωc

φu 1 1
φr 1.5 .6
φn 3 0
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Actions/decisions as points in Rn
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Ranking Rules

φ1 � φ0 ⇔

(∀ωi ∈ Ω)
(
φ1(ωi) ≤ φ0(ωi)

)
and (∃ωi ∈ Ω)

(
φ1(ωi) < φ0(ωi)

)
• φ is admissible in Φ iff (@φ∗ ∈ Φ)φ∗ � φ

• φ0 is Bayesian in Φ iff there is a probability P on Ω s.t.

min
φ∈Φ

{
EPφ =

∑
i

P (ωi)φ(ωi)

}
= EPφ0 .
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Complete Class Theorem

• If Φ is closed, convex, and bounded, every admissible φ is Bayesian
and

• the admissible Bayesian φ’s form a minimal complete class). I.e.,

(∀φ non-Bayesian)(∃φb Bayesian)φb � φ ,

and any strict subset of the Bayesian φ’s fails to have this property.

• Like the conclusion that competitive equilibria are efficient, this is a
consequence of the separating hyperplane theorem. Probabilities
here play a role very close to that of prices in competitive general
equilibrium theory.

5



Admissible rules as Bayesian
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Remarks

• The separating hyperplane theorem only tells us that there will
be linear functions separating convex sets. But probabilities, the
coefficients in this linear function, have to be non-negative and sum
to one.

• Looking at the graph, how do we know that the probabilities can’t
be negative? The summing to one is just a normalization.

• This is very much like the argument that prices should be positive
and the fact that we are free to choose the numeraire for prices.
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More Remarks

• We’ve derived probability without any reference to repeated trials and
frequencies or to a symmetry that implies a set of events must be
equiprobable.

• This approach is called subjective probability, because it arises from
consideration of the behavior of a single rational decision maker.

• Our derivation is normative, meaning it describes optimal behavior.
It need not describe actual behavior of less than fully rational people.

• Even rational agents need only behave as if they were minimizing
expected loss. They need not actually think in terms of probabilities,
any more than businessmen need to compute marginal products in
order to arrive at efficient production decisions.
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Convexity of Φ

• This is a strong assumption. It doesn’t apply in our
raincoat/umbrella/no-raingear example.

• It is probably no worse than our conventional assumption of convexity
of production possibility sets, though.

• Just as we explain diminishing returns by arguing that farmers use the
best land first, we can explain that the most cost-effective “wetness-
reduction” methods will be undertaken first (plastic bag headgear,
cheap collapsible umbrellas) and that the last increments of rain
protection (Gore-Tex foul weather gear, e.g.) will be very costly (and
thus cause high losses if it doesn’t rain).
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Other approaches, other assumptions

• Convexity plays a big role in this derivation because we have not used
any properties of the “loss” measure except that less loss is better.

• If we instead assume that a rich set of φ’s can be ranked (even if
they aren’t feasible) and that losses are in a certain sense comparable
across states, we can derive the existence of probabilities without
convexity of Φ. This is in fact the more common approach.
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Inference

• Actions φ are taken in two stages: An initial stage with no knowledge
of where we are in Ω, followed by a second stage after we observe
some data.

• φ = φ(ω, δ0, δ1(X)), where δ0 ∈ R is the initial stage choice and
δ1(X(ω)) is the second stage choice, a function of the random
variable X : Ω → R.

• This is really only a special case of our previous setup. For each
real-valued choice of δ0 and choice of the function δ1 : R → R,
φ(ω, δ0, δ1(X(ω))) is a function mapping Ω → R as before. Φ is the
set of all such functions obtainable through feasible choices of δ0 and
δ1.
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• Assuming Φ is closed, convex and bounded, any admissible action φ
will minimize expected loss for some probability on Ω.

• Note that for any ωi ∈ Ω, we can write P [ωi] = P [ωi | X =
x] · P [{ωj | X(ωj) = x}]. This follows directly from the definition of
conditional probability.

12



•

EP [φ(δ0, δ1)] =
n∑

i=1

φ
(
ωi, δ0, δ1(X(ωi))

)
P [ωi]

=
∑
x∈S

∑
{ωi|X(ωi)=x}

φ
(
ωi, δ0, δ1(x)

)
P [ωi | X = x]P [{ωj | X(ωj) = x}]

= EP

[
EP [φ(δ0, δ1) | X = x]

]
.

• This is a special case of the law of iterated expectations. If there
are no constraints that link our choice of δ1(x) to our choice of δ1(y)
for x 6= y or to our choice of δ0, then we can choose δ1 separately for
each possible value of X(ω). And it is clear from the formula that
to minimize expected loss overall, we should always choose δ1(x) to
minimize E[φ(δ0, δ1(x)) | X = x].
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Conclusion Optimal decision making, done at various states of
knowledge, requires using an initial probability distribution, and then
updating that distribution to a new conditional distribution given the
data, after new information is observed. Inference is the process of
updating the distribution based on observed data.
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Other views of inference

The view that inference is nothing more or less than the updating of
probability distributions based on new information is the Bayesian view
of inference. It links inference very directly to decision making.

The Bayesian view has nothing to say about where the probability
distribution that applies before the data is seen might come from. There
are formal rules for using data to update a distribution reflecting beliefs
about uncertain prospects, but there are no formal rules about how to
come up with the initial beliefs — not even any way to express the idea
that we are initially “completely ignorant” or “completely unprejudiced”.

Other ways of thinking about inference try to avoid this loose
end by in one way or another restricting “probabilities” to apply only
to “objective” types of uncertainty. This is what disconnects these
approaches from decision theory.
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Bayesian:Frequentist::post-sample:pre-sample

• Bayesian inference gives a probability distribution to everything
uncertain, treating parameters and unobserved data or “shocks”
symmetrically.

• Frequentist inference identifies some unknown objects as
“parameters”, which are “non-random”, meaning it is against
frequentist rules to give a probability distribution to them.

• Once the data have been observed, they become non-random in
Bayesian inference. Probability statements concern what is still
unknown, usually “parameters”, but also sometimes, e.g., future
data.
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• This insistence on conditioning probability statements on observed
data is the main distinction between Bayesian and frequentist
inference — not whether or not subjective prior information is used.
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Bayesian scientific reporting

• Economists seldom produce statistical analysis in order to make
decisions themselves. They are either part of an organization,
reporting to other people in it, or publishing results for a broader
community, some of whom may make decisions based in part on the
published analysis.

• In simple situations, this leads to reporting the likelihood, so others
can apply their priors.

• In big models, it is not feasible simply to “report the likelihood”. It
can’t be plotted.
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• It is likely to be useful to report functions of the likelihood that
involve weighting it by standardized priors.

• For example, reporting the expected value of some unknown parameter
or quantity of interest, together with an error band for it.

• The prior in these situations should be transparent, and should
downweight parts of the parameter space which are widely agreed
(among potential readers of the paper) not to be likely. Analysis with
various assumptions about the prior may be helpful.
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Examples

1. The reliable test for disease.

2. The broken thermometer.

3. Can we be confident in confidence intervals?

4. Sometimes frequentist calculations are like Bayesian analysis with a
flat prior: Normal location. HPD vs confidence.

5. Sometimes not: X ∼ N(µ, µ2) example.

6. Bootstrap confidence intervals

7. tolerance intervals for forecasts
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Questions to Check Your Understanding

In our rain gear example, suppose the list of feasible φ’s (i.e. the
whole Φ set) consisted of the following list of points:

φ(ωr) φ(ωc)

1 0.95 0.62

2 0.23 0.79

3 0.61 0.92

4 0.49 0.74

5 0.89 0.18

6 0.76 0.41

7 0.46 0.94

8 0.02 0.92

9 0.82 0.41

10 0.44 0.89

Which are admissible? Which are Bayes?
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