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Definitions

σ-field A collection F of subsets of S satisfying

• S ∈ F ;
• A ∈ F ⇒ Ac ∈ F ;
• Ai ∈ F , i = 1 . . . , ∞ ⇒ ⋃∞

i=1 Ai ∈ F .

measure A function µ : F 7→ R+, where sF is a σ-field, satisfying

• µ(∅) = 0 ;
• (∀A ∈ F ) : µ(A) ≥ 0 ;
• If Ai ∈ F , i = 1, . . . , ∞ and Ai ∩ Aj = ∅, all i 6= j, then µ(

⋃
Ai) =

∑ µ(Ai).
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probability measure A measure for which µ(S) = 1.
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Generating σ-fields

Theorem 1. If E is any collection of subsets of S, there is a uniquely defined
σ-field F that is the smallest σ-field containing E .

This gives us a way to generate σ-fields. For example, we can take
E to be all the open (or all the closed) subsets of S. The minimal σ-field
containing all the open sets is called the Borel field . The probabilities that
you have seen before are probably all, or mostly, defined on the Borel σ-field
of Euclidean space Rk.
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Generating measures

• Not as easy, generally. In particular, having a µ(A) defined for every
A ∈ E is not always enough to determine a unique measure, on the
σ-field generated by E .

• Lebesgue measure . Defined on the Borel field of Rk (plus, as a
technical addendum, all subsets of Borel sets that have Lebesgue
measure zero). All k-dimensional rectangles have Lebesgue measure
given by the usual formulas for volume of a rectangle, and this
determines it uniquely.

• Counting measure . S is a countable collection of points, F the class of
all subsets of S. µ(A) is the number of points in A.
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• Mixtures. Mix of Lebesgue measures on subsets or subspaces of
different dimensions. For example, we might put some weight on the
point (x, y) = (1, 0), some weight on (x, y) = (0, 1), some weight on
{(x, y)} | x + y = 1, and some weight on the rest of R2.

5



Integrals

The Lebesgue integral of a function f over E ⊂ S with respect to the
measure µ is written as ∫

E
f (ω)µ(dω) .

We will not write out the technical definition of the Lebesgue integral. For the
cases we are considering, where µ is usually Lebesgue measure or some
mixture of Lebesgue measures on lower-dimensional sets, the Lebesgue
integral is what you would expect from undergrad calculus.
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Densities

• p an integrable function on S

• Define a measure ν on S by

ν(A) =
∫

A
p(ω)µ(dω) .

If
∫

S p dµ = 1 (note the alternate notation), ν is a probability measure
and p is its density with respect to the measure µ. p is also called the
probability density function or the pdf.
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• Most common case: µ Lebesgue measure on Rn.

• Mixed measures: There may not be a unique way to define µ. In that
case the same ν may correspond to different p’s depending on how the
base measure µ is specified.

• Example: A distribution for (x, y) that puts probability .5 on the line x = y
over (0, 0) to (1, 1), and probability .5 on the rest of the unit square.

– Base measure Lebesgue measure on the unit square plus Lebesgue
measure (corresponding to length) on the x = y line. p(x, y) = .5 for
x 6= y and p(x, y) = 1/

√
8.

– Base measure gives unit weight to the x = y line (instead of weight√
2, corresponding to the line’s length). p = .5 along x = y.
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