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l. Notation and basic assumptions
We consider a problem defined in terms of
t: atime index, with integer values
C: akxl vector, called the control vector
S: annxl vector, called the state vector

F'(Q: a mapping from state vector values to subset®afdefining constraints on the
choice ofC

Jy: the information set dt consisting off C(s), § $,&( $all st}
& . apxl random vector of disturbances at time

The objective is to maximize
E[iﬁ‘u«;, sﬂ ®
t=0

by choice of{C, S.,;, t=0,...,.0} . We assume that the infinite sum inside the brackets in (1) is

well-defined for each choice @f's that satisfies the constraints below and that the expectation of
the sum is well-defined for each such choiceCs. The choice ofS's is constrained in four
ways:

A) § is given, not subject to choice;

B) for eacht=1,...¢0, § is determined from past history and currenticcording to

S = (G 0,80 - (2)
C) for eacht, G, is constrained to lie in the sE{S) ;

D) for eacht, C, is allowed to depend only on informationdn, and only in such a way that
C. andU(C, ) are well-defined random variables.

Note that (2) means that, though we describe the problem as that of choosi®)dmath to
maximize the objective subject to (A)-(D), effectively we choose Gnlgince at each onceC

is chosen,S,; is determined by (2). Note also that (D) means that the formal mathematical
problem here is not choosing a sequence of nunfiglls but choosing a sequence of functions



{C(O} such that at each dateC(w;) = G{{ G, S, 4.all = } maps our positiow, in the
information set7, into our best choice fog, .*

To complete the specification we need assumptions on the random distughantes
standard dynamic programming framework requires that

E) for eacht, &,,, is independent o€, and of all the random variablesip® and that

F) the random variablege,,t =1,...,0} are mutually independent and identically distributed
(i.i.d.).
This means that no choice made before tirman influence the realization of the random variable
&.. Note that this does not mean thgt and C, are independent fos=t. Sincee's dated
earlier thars are in ¢, they may influence our choice @ ; and this will create dependence in
the joint probability distribution oC, and &, for s>t.

Now observe that the range of probability distributions we can generate for valGesuod

S4 for t=0 through our choice o€" functions depends ofl, only via §,. Since we are
allowed to make the choice df, depend on anything i, that we like, we can create
dependencies between the actual future valu&aofiC and, say£_; if we like. But since this
dependence can take any form we like, and since the dataame all fixed and known to us at
the time 0 when we choosg,, the range of distributions for futu@andS that we can achieve
does not depend on,, except through the fact th&, enters the version of (2) fdr=1. We
denote bys the set of all possible values §fand we mean by calling “all possible values 0%’
that not only is every value &, with which we might be confronted if) but also for eveng,

in <5 and every way of choosirgs that satisfies (A)-(D)S lies in<s for allt with probability one.
Thus for everyS, in < there will be a unique, possibly infinite, leagbper bound for the

attainable values of the objective function. [Note that, though the fGtsiendSs are unknown

and random at time 0, the objective function includes an expectation operator, so its value is a
number, not a random variable.] We denote/lgil the function mappings in < into the least

upper bound of achievable values of the objective function. If the problem is well d&fjsgd,

exists for eaclsin §, though it is important in practice to check that the infinite sum in (1) indeed
converges for all feasible choices of actioNss called thevalue function.

! The technically sophisticated reader may note that (D) directly rules out the kind of non-
measurability that concerns Stokey and Lucas in their chapter 9.1.

? Since G, is required by (D) above to depend only on random variables, i(E) could omit the
“of C, and” phrase.



ll. The principle of optimality: necessity and sufficiency

Theorem 1 (The Principle of Optimality) Suppose thaV is the value function for the
problem of maximizing (1) subject to YAF). Then foreachSin -, E[V( f(C Ss)] exists for all

Cin I'(S) (with zinfinity allowable values), and

V(S)= I._ur.(bs.){U(C 9+BEV t C )]} 3)

Cin

Remark In (3) we have omitted dates @@y S and & but we mean here to take the
expectation with respect to the distributioreqfwhich is the same for dll and to treat as non-
random. If (3) is true in this form for eve8in 5, then of course it will also be true at every

with C, S and theE operator givert subscripts and given at+1 subscript. For (3) to make
sense E[V(C, S¢)| must be defined, though possibly infinite, as the theorem asserts.

Proof. Note that the objective (1) can be written as
U(co,so>+BEo[ 5y AU G, ao] @
t=0

The term in (4) in brackets, together with the precedingperator, is exactly the same in
form as (1), except with all the time subscripts advanced by 1. Since the constraints are all of the
same form at all dates, the least upper bound of this term for a given veyesof (S). In a

well-defined problem, (4), being the value of the objective function, must itself be well-defined for
every §, in 5 and every feasible choice of actions. But one particular feasible choice of actions is

to chooseC, inT(S,) arbitrarily, then to choos€, for datest=1 and later so that the second
additive term in (4), for every possible value 8§f= f( G, S.£,), is at leastvV(S)-0 when
V(S) is finite and at least &/whenV(S) is infinite, whered is an arbitrarily small positive
number. With this particular way of choosi@gs, we will have, therefore, whevi(S) is finite
with probability one,

{U(C. &)+ BV %)}—{ UG 9+B %iﬁs 0 &, @D}}D[Oﬁ]- (5)

Since the second term in brackets is a random variable whose expectation we know exists, as it is
the value of the objective function for a feasible choice of actions, (5) bounds its first term in
brackets above and below by random variables whose expectations exist and are arbitrarily close
to each other. Thus the expectation of the first term exists as well. W& is infinite with
non-zero probability, our choice @fs gives an arbitrarily large value of the objective function,
implying that the first term, being bounded below by random variables with arbitrarily large
expectation, itself has a well-defined infinite expectation.

Now suppose (3) were not true. Then either there would be, for Somg a choiceE(S)
of C making the right-hand-side of (3) exceédS), or there would be son&in § such that the
right-hand side of (3) is bounded away frafS) from below. Suppose that (3) fails through



the right-hand side being larger th‘d(lé), whereS is the particular value @& at which (3) fails.

Now consider this way of choosir@s when§, = S: at time 0, choos€&, = 5( §) ; at all later

dates, choos€'s according to a scheme that makes the term in brackets in (4) very close to
V(§). By doing so, we can make (4) as close as we like to the right-hand side of (3). But then

we will have saceeded in choosing's in such a way that the objective function value exceeds
V(S), a contradiction.

If (3) fails the other way, so that for sorfe the right-hand side of (3) is bounded away from
V(S) from below, a parallel argument, again using (4) shows that there is no way to Ct®ose

to bring the objective function value arbitrarily C|OSé\/tC§) when§, = §, again a contradiction
with the definition ofV, which completes the proof.

There is an additional necessary condition on the value function that characterizes its long run
rate of growth.

Theorem 2 Suppose thay is the value function for the problem of maximizing (1) subject to
(A)-(F). Then for everyd >0, it is possible to choose a policy functi@j()] such that, for each

Sin 5 with V(S) finite, the value of the objective function attained usBxl)lis at leastvV(S) -,
and the sequence &, t=1,...,0 generated by settin§, = S and

§= f(G($4), 8u&) EL..w (6)
satisfies
BEN(S)D - 0. (7)

Remark In the (usual) special case where there is a policy fundfiofi) that actually
generates an objective function value equa¥{&,) (rather than just arbitrarily close to it), (7)

must hold for theéS sequence generated By() from every initialS for whichV/(S) is finite.
Proof: First observe that we can certainly fiGf(). SinceV satisfies (3) by Theorem 1, we
can for eacl$that delivers finite/(S) chooseCj(S) to satisfy

U(CHS), 9+BEY (& § 8)]> VISa-BY. (8)

If (8) holds for eacts with finite V(S), then we can apply (8) to the term in brackets on its own
left-hand side to obtain

UGS, ) +BE UGS, $+B8 V2 VB @a-Bo-1-B)B,  (9)

where we are assuming that t§esequence is being generated from (6). Repeatedly applying (8)
this way will give us the desired conclusion, that the realized value of the objective function using
C5(Nis at leasV () - 9.



This result suggests a method for solving these problems: keep guessing forms\Mfor the
function until we find one that satisfies (3) for @ih . Since in checking whether (3) is satisfied

for all S, we will ordinarily be finding, for ever§, the C(S) that maximizes the right-hand side,
we will have the policy ruleC™(] immediately at hand when we have found the Nght

The problems with this strategy are, first, that it is hopelessly inefficient until we find some
systematic way to locats that might satisfy (3), and, second, that so far we know only that the
V that represents the maximum attainable objective function value -- the value function of the
problem -- satisfies (3). We have not yet shown that there cannot be other fuddtiatsalso
satisfy (3). It turns out that generally there are oligr besides the actual value function, that

satisfy (3), but that we can pick out the true value function by applying some additional side
conditions.

Theorem 3 Suppose there is a functidf™ that satisfies (3) for evergin 5 and that in
addition

) for everySin 5 there is a valueC(S) for C that attains the maximum on the right-hand
side of (3) withV =V";
ii) forevery §, in, if §, t=1,...,0 , is generated from

SWIE ({ C]( D, $.€1) (10)

then
BE[V($)] 0T~ 0 ;and (11)

i) for any V™# V" that solves (3) for everg in 5, there is some>0 such that for any
associateC;" satisfying

UG, 9+BEV( L E( 5 8)]z V()80 (12)

foreveryS, ins, if §, t=1,...,0 , are generated from
S = f(GAS$y) Sp&) EL..o ,then (13)
lim B'ENVH{S)=0. (14)

ThenV" is the value function for the problein.

Remark The theorem asserts that if the necessary conditions of Theorems 1 and 2 are met for
V", thenV" is the value function unless there is some other solution to (3) that violates (14). It

* Condition (iii) can easily be relaxed to require only th?t IinﬂYEOV S €0). The proof then

is longer, but has essentially the same form.



is straightforward, but somewhat tedious, to extend this theorem to the case whereigo
available and we instead have to settle for a sequencg’stthat approach the upper bound, as
we used in Theorem 2.

Proof. Suppose there is some solutigf'# V" to (3). If for allSin 5, V(S)< VA 9,

with strict inequality for somé, then V™ can't be the value function. This follows because,
since it satisfies (ii)V"~ does represent an attainable value of the objective function for each
possible value of its argument, so a policy that delivers a ld#érinstead cannot be optimal.
But then suppose that, for sorfe V(S)- V{ 9=y >0. Consider the following policy: for

t=0,..T-1, setC, = G(S) chosen as in (i), then for=T setC, = CY(S), . The value of
the objective function under this policy starting fr@yp= Sis

T-1
EO|:2U(C6ED(S)1 $)Bt}+BT EV(9 0~ ¥ B (15)
t=0

where by makingd small enough we can maR&™(S) as close as we like tv™(S). The
convergence in (15) follows from (iii) and the definition@ﬂj. But notice that

VH(S) =W C(9, S+BEM $2 UK )5 )88 (EWV)S (16)
(Note that in (16) we are implicitly treating the tv® values as generated by t@echoice at
time zero in each expression -- so Bés in the two expressions are not the same.) Applying the
same argument again V)DD(S_) in (16), and so on recursivelytimes allows us to conclude

T-1 _
EO[XU(CED(S), $)B‘}+BT EV(9< U B (17)
t=0

But with & arbitrarily small, (15) and (17) together impK(S) > V('S which contradicts our
initial assumption. S&/™(S)< V{( § for all S, which we have already noted means Mt is

not the value function. Since the argument applies to arbitydfy Vo, V" is the unique
optimal solution andve have completed the proof.

Corollary: If U is bounded below, the necessary conditions of Theorems 1 and 2 are also
sufficient.

Proof. Because the objective function is discounted, it is bounded belowWitehounded
below. This makes (14) hold automatically.
lll.Value Iteration

The arguments of the previous section point to a conceptually simple method for

approximating the value function and her@e the optimal policy rule. The method is called, for
reasons that will be obviousalue function iteration, and proceeds as follows. Begin by



guessing a forn¥,, for the value function. Then for each iteratmm=1,2,3,..., set, foeachSin
S,

Va(S)=Lub{U(G 9+B EV,( € C )]} - (18)

Continue untilV,(S) = V,4( 9, all S to within some criterion for numerical accuracy. At that

point aV satisfying the principal of optimality will have been arrived at, and the otdemssary
and sufficient conditions can be checked.

It is not necessarily true that value function iterations converge, however. When
unbounded either above or below, it can easily happen that value function iteration convergence
fails. Since many of the standard utility functions of macroeconomic models -- logarithmic
1-y

C
U(C)=log(C) and CRRU(C) :1
-y
condition, we must generally be wary that value iteration might not converge. It is worth
knowing, though, that wheb is bounded (which we already know is a sufficient condition to
guarantee that a solution to the optimality equation is the value function) value iteration
necessarily converges. The argument goes as follows. First we note that

Va(S) = Vha( 9=

for example -- fail to satisfy such a boundedness

cinr(s)

Lub [ U C S 0 eBp [EM (.CH)- W (1.Cey]} .9

This follows from (18) and the fact that

l.u.b{a(} - Lu.b{b(D}| < I.u.bfja- K]} . (20)
If we introduce as a norm on the spac&’sf
V| =sugv s} . (21)

(19) can be used to produce
”Vn - Vn—l” < .B”Vn—l - Vn—2|| . (22)

This implies that the sequence of value function iterfte$ is a Cauchy sequence on the space

of bounded functions, and hence that it converges to some bounded function. The reason the
argument fails wheid is unbounded is that thanhis generally unbounded (not infinite -- it just

gets arbitrarily large or small as we change its argui@eand therefore does not allow us to use

(21). Even if we start with a boundéd, the unboundedness &f generally can maké/

unbounded.

IV.Constraints at Infinity

We could have set up our problem with two sorts of additional terms. The objective function
could have been expanded to the form

E[iﬁ‘u«;, s>}+yrgﬁ‘ A @3)
t=0 -



and the constraints could have been expanded to include the requirement that

lim B'G(§) <0 . (24)

Note that in (24) there is no expectation operator, so we are requiring that the inequality hold
with certainty.

With these additions, the problem retains its recursive structure and the Bellman equation still
functions in the same way as a necessary and (with some side conditions) sufficient condition for
an optimum. You might go through the arguments yourself step by step to be sure that this is
true.

V.Exogenous States

In many economic models the assumption off i.i.d. shackB) in the first part of the notes,
is a source of some difficulty. The objective function is often interpretable as a utility function or
profit function and the constraints (2) on the evolution of the state are often interpretable as
budget constraints or production relations. But in such objects the serial dependence properties
of "exogenous disturbances" is not naturally taken to be restricted. "Technology" in a production
function, for example, is often taken to drift upward in a serially correlated way, and "income" in
a consumer's optimization problem is naturally taken to be serially correlated. Such situations can
be accomodated by including in the equations for evolution of the state (2) a description of the
serial dependence in the exogenous disturbances. In this case the exogenous components of the
problem might be labeled, and their stochastic evolution described by an equation of the form

Zi1 = 4 N1) (25)

in which n, satisfies both (E) and (F). The state vector in the problem is then taken to include

both endogenous states, which we might l&bebnd exogenous statés The full state vector
S=[K Z]'. The equations of evolution given in (2) can then be expanded to the specialized

form

Kisg = F(C Kt 4 E)
Zi = 94, Na) .

Heren is playing the role of a component&ih the more general specification (2).

(26)

We point out this special case here not only because it shows how serial dependence in
stochastic components of the model can be accommodated within a dynamienpringraetup,
but also because it often helps simplify finding and interpreting solutions to recognize a structure
like that in (25)-(26) when it is present.

VI.First Order Conditions

The usual techniques of calculus, in particular the Kuhn-Tucker conditions for an optimum,
can be applied to the Bellman equation (3) wheandV are differentiable and have appropriate
concavity properties and when the constraints defined in (C) also have differentiable forms.



Slightly abusing notation, we will us¢’ to stand forDgV = % in what follows. Assume that

for each valu& of the state vector and eaChn ' (S),

E[V(90Q (G Se), RUC$ (27)
are well-defined.

Assume also that the sdi(S) can be characterized by the inequality (or vector of
inequalities)
H(C,S)<0 . (28)

The usual Kuhn-Tucker theorem then asserts that a necessary condition for (3) to hold (assuming
that the lub in (3) is attained) is that

(C,9) o”'H(C S
acC

+BE[V (f(c Ss)a‘i} A S (29)
with A(S) > 0 for those elements df corresponding to which the inequality in (28) is an equality,
and A(S) =0 for those where the inequality is strict. Recognizing that optimala function

CH(S) of S, we can differentiate left and right-hand sides of (3) with resp&tambtain
e OU , 17} -
v (S)—E+,BE[V(S)[%}+%(U +BE[V( F(CX( 9, Ss)])% . (30)

In writing (30) we assume that" is differentiable. Notice that the term in brackets following
d/0C is exactly the left-hand side of (29). The fact that this term is zero in the case with no
constraints orC is a special case of a theorem called the envelope theorem, and (30) with that
term substituted out is sometimes called the "envelope condition” in dynamic programming
jargon.

Because (30) involves the unknown functieh, it is not directly very useful. Using (29) we
can convert (30) to the form

) , aI H(C,S) 4CH(9)
vi(9)= 22 +pE v (1(C SeN T [ A TS (31)
Then we observe that, X(S) >0, so the constraint thet=0 is binding,
—dH(C;éS)’ 9 - D,H(CY(9), 3&;3 +D,H(CY(S), 9=0 . (32)

Using (32) in (31) then gives us the usual form of the envelope condition
V' =%+BE[ (1(C, S¢)) aﬁi} A(S)M (33)

Equations (29) and (33) together are sometimes called the Euler equations for the problem. Note
that one way to remember them is to form the “Hamiltonian-like” expression



V(9-UGC9-BE (CR)+A HCPH (34)

Equations (29) and (33) are then the partial derivatives of (34) with respeCtatad S
respectively.

When (28) holds with equality, (28), (29) and (33) are a system with as many equations as the
sum of the dimensions of the vect®@sS andA. If it were not for the expectation operators in
the system, we could solve it ff'(S), C andA for any givenS,. Because of the expectation
operator, we have to treat the system as a functional equation. One way to use it
computationally, for example, would be to postulate a functional formVforand use the
postulated form in computing the expectations in (29) and (33). Then the system can ordinarily
be solved jointly foiIC, A andV'(S) for any givenS producing (if we solve it for many values of
S a new candidate guess fgr. Iterating this process we might hope to arrive ¥t dunction
that satisfies the equations, and in the process @t &unction that defines optimal decisions.
Methods like this are, or can be made to be, numerically more efficient than value function
iteration when the problem is smooth enough to allow their application.
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