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These notes extract results from the previously distributed dynamic programming notes.  The
main difference is just that proofs, remarks, and discussion have been taken out to allow listing
the results in compact form.  Theorem 2 below uses a strengthened regularity condition (requiring
that every solution to the Bellman equation be an attainable maximum, rather than just a least
upper bound) that allows the result to be stated more simply, while also relaxing its condition (iii).
The sections of the previous notes not summarized here, on value iteration, constraints at infinity,
and exogenous states, were already in compact form in the previous notes.

I. Notation and basic assumptions

We consider a problem defined in terms of

t : a time index, with integer values

C : a kx1 vector, called the control vector

S : an nx1 vector, called the state vector

Γ( )⋅ : a mapping from state vector values to subsets of Rk , defining constraints on the
choice of C

� t : the information set at t, consisting of C s S s s s t( ), ( ), ( ),ε all ≤l q
ε t  : a px1 random vector of disturbances at time t .

The objective is to maximize
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by choice of C S tt t, , ,...,+ = ∞1 0l q .  We assume that the infinite sum inside the brackets in (1) is

well-defined for each choice of C’s that satisfies the constraints below and that the expectation of
the sum is well-defined for each such choice of C’s.

A) S0   is given, not subject to choice;

B) for each t=1,...,∞, St   is determined from past history and current ε t  according to

S f C St t t t= − −( , , )1 1 ε  . (2)

C) for each t, Ct   is constrained to lie in the set Γ( )St ;

D) for each t, Ct  is allowed to depend only on information in � t , and only in such a way that
Ct  and U C St t( , )  are well-defined random variables.
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E) for each t, ε t+1 is independent of Ct  and of all the random variables in � t
1 and that

F) the random variables ε t t, ,...,= ∞1l q  are mutually independent and identically distributed

(i.i.d.).

We denote by � the set of all possible values of S. We denote by V( )⋅  the function mapping
S's in � into the least upper bound of achievable values of the objective function.  If the problem is
well defined, V(S) exists for each S in �, though it is important in practice to check that the infinite
sum in (1) indeed converges for all feasible choices of actions.  V is called the value function.

II. The principle of optimality: necessity and sufficiency

Theorem 1:  (The Principle of Optimality) Suppose that V is the value function for the problem
of maximizing (1) subject to (A)-(F).  Then for each S in �, E V f C S( , ,εb g  exists for all C in

Γ( )S  (with ±infinity allowable values), and

V S U C S E V f C S
C S

( ) ( , ) ( , ,
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= +l.u.b.
 in Γ

β εb gn s (3)

Theorem 2:  Suppose that V is the value function for the problem of maximizing (1) subject to

(A)-(F).  Then for every δ > 0, it is possible to choose a policy function Cδ
∗ ⋅( )  such that, for

each S in � with V(S) finite, the value of the objective function attained using Cδ
∗ ⋅( ) is at least

V S( ) − δ , and the sequence of S tt , ,...,= ∞1  generated by setting S S0 =  and

S f C S S tt t t t= = ∞∗
− −( ( ), , ), ,...,δ ε1 1 1 (4)

satisfies

β t
t tE V S0 0( ) →∞ → . (5)

Theorem 3:  Suppose there is a function V ∗  that satisfies (3) for every S in � and that in addition

i) for every S in � there is a value C S∗( )  for C that attains the maximum on the right-hand

side of (3) with V V= ∗ ;

ii) for every S0  in �, if St , t = ∞1,..., , is generated from

S f C t St t t+
∗

+=1 1( ( ), , )ε (6)

then

β t
t t

E V S0 0∗
→∞

 →( )  ; and (7)

                                               
1 Since Ct  is required by (D) above to depend only on random variables in � t , (E) could omit the
“of Ct  and” phrase.
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iii) for any V V∗∗ ∗≠  that solves (3) for every S in �, there is an associated policy function C∗∗

satisfying

U C S S E V f C S S V S( ( ), ) ( ( ), , ( )∗∗ ∗∗ ∗∗ ∗∗+ =β εd i , (8)

and for every S0  in �, if St , t = ∞1,..., , are generated from

S f C S S tt t t t= = ∞∗∗
− −( ( ), , ), ,...,1 1 1ε  , then (9)

lim inf ( )
t

t
tE V S

→∞

∗ ≥β 0 0 . (10)

Then V ∗  is the value function for the problem.

Corollary:  If U is bounded below, the necessary conditions of Theorems 1 and 2 are also
sufficient.

III. First Order Conditions

Sometimes the following equation is called, by itself, “the” first order condition,
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while this next one,
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is called the “envelope condition”.  Note that both emerge simply as first order conditions if we
apply to the standard dynamic programming setup of objective function and constraints the usual
rules for generating first order conditions from stochastic Lagrange multipliers, with ′V  playing
the role of the vector of Lagrange multipliers.

Equations (11) and (12) together are sometimes called the Euler equations for the problem.
Note that one way to remember them is to form the “Hamiltonian-like” expression

V S U C S E V f C S H C S( ) ( , ) ( ( , , )) ( , )− − +β ε λ (13)

Equations (11) and (12) are then the partial derivatives of (13) with respect to C and S,
respectively.


