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Econ. 511b Spring 1998 C. Sims

RANDOM LAGRANGE MULTIPLIERS AND TRANSVERSALITY

Lagrange multiplier methods are standard fare in elementary calculus courses, and they play a
central role in economic applications of calculus because they often turn out to have
interpretations as prices or shadow prices.  You have seen them generalized to cover dynamic,
non-stochastic models as Hamiltonian methods, or as byproducts of using Pontryagin’s maximum
principle.

In static models Lagrangian methods reduce a constrained maximization problem to an
equation-solving problem.  In dynamic models they result in an ordinary differential equation
problem.  In the stochastic models we are about to consider they result in, for discrete time, an
integral equation problem or, in continuous time, a partial differential equation problem.  Integral
equations and partial differential equations are harder to solve than ordinary equations or
differential equations – they are both less likely to have an analytical solution and more difficult to
handle numerically.  The application of Lagrangian methods to stochastic dynamic models
therefore appears to be of less help in solving the optimization problem than is their application to
non-stochastic problems.  Consequently many references on dynamic stochastic optimization give
little attention to Lagrange multipliers, instead emphasizing more direct methods for obtaining
solutions.  The economic literature has to some extent been guided by this pattern of emphasis.
This is unfortunate, because Lagrangian methods are as helpful in economic interpretation of
models in stochastic as in non-stochastic models.  Also, in general equilibrium models, use of
Lagrangian methods turns out sometimes to simplify the computational problem, in comparison to
approaches that try to solve by more direct methods all the separate optimizations embedded in
the general equilibrium.

I. A General Case
Since in this course we are more interested in using these results than in proving them, we

present them backwards.  That is, we begin by writing down the result we are aiming at, then
discuss limits on its range of applicability, and then only at the end sketch some arguments as to
why the results are true.

We consider a problem of the form
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We assume that the vector Z is an exogenous stochastic process, that is, that it cannot be
influenced by the vector of variables that we can choose, C.  For a dynamic, stochastic setting, the
information structure is an essential aspect of any problem statement.  Information is revealed
over time, and decisions made at a time t can depend only on the information that has been
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revealed by time t.  Here, we assume that what is known at t is Z s
s

t
( )l q =−∞ , i.e. current and past

values of the exogenous variables.  Of course implicitly this means that also C s
s

t
( )l q =−∞  is known

at t, since choice of C t( )  always must be a function of the information available at t.  The class of
stochastic processes C that have this property are said to be adapted to the information structure.

We can generate first order conditions for this problem by first writing down a Hamiltonian
expression,
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and then differentiating it to form the FOC’s:
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Notice that:

• In contrast to the deterministic case, the Hamiltonian in (3) and the FOC’s in (4) involve
expectation operators.

• The expectation operator in the FOC is Et , conditional expectation given the information
set available at t, the date of the choice variable vector C t( )  with respect to which the
FOC is taken.

• Because U t  and gt  each depend only on C’s dated t and earlier, the infinite sums in (4)
involve only U’s and g’s dated t and later.

• The β t  term at the left in (4) is superfluous and is usually just omitted.

In finite-dimensional problems, first order conditions are necessary and sufficient conditions
for an optimum in a problem with concave objective functions and convex constraint sets.  The
conditions in (4) are not as powerful, because this is an infinite-horizon problem.  First order
conditions here, as in simpler problems, are applications of the:

Separating Hyperplane Theorem: If x  maximizes the continuous, concave function V ( )⋅  over

a convex constraint set Γ in some linear space, and if there is an (infeasible) x∗  with

V x V x( ) ( )∗ > , then there is a continuous linear function f ( )⋅  and a number a such that f x a( ) >
implies that x lies outside the constraint set and f x a( ) < implies V x V x( ) ( )< .

In a finite-dimensional problem with x n ×1, we can always write any such f  as
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where the fi  are all real numbers.

If the problem has differentiable V and differentiable constraints of the form g xib g ≤ 0 , then it will

also be true that we can always pick



3

f
V
x

xi
i

= ∂
∂

b g (6)

and nearly always write

f x
g x

x
xj

j

j

( )
( )

=
∂

∂
•∑λ  . (7)

The “nearly” is necessary because of what is known as the “constraint qualification”.  It is possible
that the first-order properties of the constraints near the optimum do not give a good local
characterization of the constraint set1.  However, if we can find an x  vector and a set of non-
negative λ i ’s that satisfy the constraints and (6) and (7), we have found the separating
hyperplane and hence the optimum.  The standard Lagrange multiplier equations are therefore
sufficient conditions for an optimum, and they are “nearly” sufficient:  We know there will always
be a separating hyperplane, and usually we will be able to write it in the form (7), but there are
some knife-edge (i.e., rare) special cases in which this will not be true.  This justifies the common
strategy of trying to solve such problems by looking for solutions to (6) and (7).  The sufficiency
part of these results can be summarized as:

Kuhn-Tucker Theorem2:  If i) V is a continuous, concave function on a finite-dimensional linear

space, ii) V is differentiable at x  with gradient 
∂
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over the set of x’s satisfying g xi i kb g ≤ =0 1, ,..., .

But in an infinite dimensional space it may not be true that we can write every continuous linear
function as an infinite sum analogous to (5), and the potentially infinite sums in (7) and in (5) with
fi  defined by (6) might not converge.  These complications provide additional reasons that there

can be models in which the Lagrange multiplier equations are not necessary conditions for an
optimum, but more importantly they mean that they are no longer sufficient conditions, even for

                                               
1 If you want an example of this, try to use Lagrange multiplier methods to solve the problem of

maximizing − − −x y2 2
1b g  subject to x y− + ≤1 1

2 2b g  and x y+ + ≤1 1
2 2b g .  This problem

satisfies all the differentiability, concavity and convexity one might like, yet does not yield to a
direct Lagrange multiplier approach because at the optimum first-order expansions of the
constraints do not characterize the constraint set.  The difficulty goes away if the right-hand-sides
of the constraints are changed from 1 to 1.1, say.
2 This version of the Kuhn-Tucker theorem is not the most general possible, even for finite-
dimensional spaces.
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problems with concave objective functions and convex constraint sets.  It is to handle these
problems that we impose on infinite horizon problems what are called transversality conditions.

To apply the Lagrange multiplier idea to our current problem, interpret V as given by the
maximand in (1), x  as being C , the optimal C sequence, and x as being a generic C sequence.  In
our stochastic problem, (5)-(7) become
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In order to get from (8) what are given as FOC’s in (4) above, we interchange the order of
summation in the expressions on the left and right sides of (8), then equate coefficients of
correspondingly subscripted C’s.  The version of (8) with orders of summation interchanged is
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from which it is easy to see that (4) follows, if we equate the coefficients on Cs  terms on the two
sides of the equation.  But to justify these manipulations, we must be careful about issues of
convergence.  Dealing with convergence of these sums is checking transversality.

Note that simply “equating coefficients” on the left and right of (9) might seem to imply (4)
either without the “ Et ” operator or with an unsubscripted “E” operator.  To understand why the
Et  appears, remember that Ct  is a random variable, a rule for choosing a numerical value for Ct

as a function of information available at t.  Its “coefficient” in (9) is therefore the sum of all the
terms that multiply it, over both dates and possible states of the world given information at t.  It is
the sum over states consistent with information available at t that results in the Et  operator in the
FOC’s.  This justification may be hard to understand at this point.  It is made explicit in a simple
special case at the end of these notes.

In most economic models, there are only finitely many lags as arguments to g and U, which
makes many of the infinite sums in (8) and (9) become finite.  In fact most commonly U has no
lags in its arguments.  To get versions of transversality that are closer to what is commonly
discussed in economic models and allow us to prove results, we now specialize to the case where
U U C C Zt t t t= −, ,1b g  and g g C C Zt t t t= −, ,1b g .  This allows us to write a version of the Kuhn-

Tucker theorem for infinite-dimensional spaces as:

Infinite-Dimensional Kuhn-Tucker:  Suppose
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ii) U is concave and each element of g C C Zt t t, ,−1b g  is convex in Ct  and Ct−1  for each Zt ;

iii) there is a sequence of random variables Ctm r  such that each Ct  is a function only of
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iv) U and g are both differentiable in Ct  and Ct−1  for each Zt  and the derivatives have finite
expectation;
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all t ≥ 0  (i.e., the Euler equations hold).
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Then Ctm r  maximizes V subject to g C C Zt t t, ,− ≤1 0b g  for all t = ∞0,..., .

Proof:  Suppose Ct
∗n s  is a feasible sequence of consumption choice rules that achieves a higher

value of V than does Ctm r , despite Ctm r ’s satisfying the conditions of the theorem.  We simplify

notation from this point on by using U t  for U C C Zt t t, ,−1c h  and using gt  for g C C Zt t t, ,−1c h .  By

differentiability and by concavity of U and convexity of g, we know that for each t
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Using (10), the definition of V, and our working hypothesis that Ct
∗n s  gives a higher value of V

than does Ctm r , we conclude that
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But our Euler equations as given in (vi) assure us that (12) equates term by term, except for a
leftover term on the end, to the expected sum of the gradients of g, weighted by the the λ
sequence.  In particular, (12) is exactly
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Since the C∗  is by hypothesis feasible, since λ t ≥ 0 , and since λ t tg  is zero with probability one,

λ t t t t tg C C Z g⋅ − ≤∗
−

∗, ,1 0d ie j .  The first expectation within curly brackets in (13) is therefore less

than or equal to zero for every T, by convexity of g.  Thus the first term has a lim sup less than or
equal to zero.  The non-positivity of the lim sup of the second term in the curly brackets is exactly
what we assumed in our transversality condition (vii).  This completes the proof by contradiction:

while (12) has to exceed zero if Ct
∗n s  improves on Ctm r , the conditions of the theorem guarantee

that it is equal to (13), which has to be non-positive.

Note that condition (vii), transversality, is not in quite the usual form.  The usual form would
simply assert
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Often in economic models the U terms in the true transversality condition as given in (vii) drops
out or converges to zero automatically.  (14) then guarantees transversality at one particular

point, Ct
∗ =n s l q0 ; though in most economic models the zero sequence is in the feasible set, this

need not always be true.  The conventional transversality condition is also too strong in that it
requires actual convergence, rather than only that the lim inf be non-negative.  It is too weak in
that it checks only one point in the feasible set.  There are models in which, if we replaced our
condition (vii) by (14), there would be C sequences that satisfy all the conditions of the modified
theorem that are not in fact optima.  A leading example of such a model is the linear-quadratic
permanent income model with a borrowing constraint replacing the usual bound on the rate of
growth of wealth.  The standard linear decision rule is not optimal in such a case, but it satisfies
the standard transversality condition (14), while failing our condition (vii).
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