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Linear Approximation to NeoClassical Growth

1. Linearizing the neoclassical stochastic growth model

Consider the model in which a representative agent maximizes
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If we use λ and ν to denote the Lagrange multipliers for the two constraints, the first order
conditions for an optimum (other than transversality) are
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(2)

It simplifies notation and interpretation if we introduce special symbols for the derivative of
"output" Y with respect to investment goods I and consumption C
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and introduce another special symbol for the rate of return on capital
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This allows rewriting the first three equations of (2) as
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which can in turn be solved to eliminate λ and ν and yield
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Equation (6) equates the subjective discount factor to the expected rate of return on capital,
corrected for the rate of inflation in capital goods prices in consumption goods units and for the
intertemporal marginal rate of substitution of consumption goods.  It is not hard to see from (6)
that in deterministic steady state,

r = −β 1. (7)

Of course in this model Q, P, and r, are not actually transaction prices, since there is a single type
of representative agent and therefore no trade.

With (7) in hand we do not need an explicit solution for the steady state in order to linearize, but
if the solution is needed, it can be found by converting (7) to the form
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Equation (8) can be solved for steady state K explicitly, once the right hand side of (1) with L=1
is substituted for Y.  To keep our system one in just three variables, we must rewrite (6) in terms
of C, K, I alone, using the definitions of Q, P, and r:
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It is convenient to linearize with respect to the natural logarithms of C, K and I rather than the
levels of the variables.  We will form a Taylor expansion in the logs of these variables about the
steady state of the system given by the equations in (1) (with L=1 substituted out) together with
(8).  We will use lower case letters to refer to logs of variables and dx to refer, for any variable X,
to log( ) log( )X X− , where X  is the steady state value of X.  Then the linearized system is

PCdc QIdi r QKdkt t t+ = − −( )δ 1 (10)

dk dk dit t t= + −−δ δ1 1( ) (11)
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In (12), the ηt+1  term is an endogenous expectational error and satisfies Et tη + =1 0 .  We can see
from (8) that steady state values of K , and hence (via the constraints in (1)) C and I, are all
independent of the parameter γ.  Thus we can see from (12) that if γ  is made large while the
other parameters remain fixed, the system has an equation that in the limit is approximately
E dc dct t t+ =1 , apparently making the log of consumption a martingale.  While this turns out to be

correct, the argument we have just given is not tight, as making γ large might make the values of
K along the solution path large, so that the fact that the coefficients on K are small might not
imply that they have small influence on E dct t+1.

To complete an analysis of the conditions under which the Hall model's conclusion that c is
approximately a martingale is valid, we need to form the system's characteristic polynomial.
Calling the five coefficients on choice variables in (12) ν i i, ,...,= 0 4 , we can lag (12) once and
combine it with (10) and (11) to obtain the following system in matrix notation:
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Note that because all the variables are taken as deviations from steady state, the linearized system
contains no constant terms.  The left-hand-side matrix is non-singular for all possible parameter
values, because it can be shown that ν ν0 1 and  must be of opposite sign (with ν 0 0< ), so that
the determinant ∆ = −QI PCν ν0 1 is always non-zero.  It therefore has an inverse we can
calculate as
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Multiplying the matrix in (14) times the right-hand-side square matrix in (13) yields
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As γ → +∞ , ν 0  and ν 2  go to −∞  in such a way that 
ν
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1→ , while the remaining ν i  remain

bounded.  Thus (15) converges in this case to the limiting form
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which has real eigenvalues of r and 1.  We conclude that in this limiting case of extreme risk
aversion the Hall conclusion that consumption is approximately a random walk is correct, since
the model has one explosive root, r, that will be suppressed in the solution, and one root of 1.

Another interesting case is µ = 1, with no movement in the relative price of C and I.  This makes

ν ν1 3 0= = .  Then we can see from (15) and the definition of ∆ that we will be back to the form
(16) if ν 4 0→ .  This occurs, as we can see by referring back to (12) (where ν 4  is the coefficient
on dkt ), when either σ → 1 or α → 1, both of which deliver in the limit a linear production
technology.  But notice that linearity of Y in K is not enough.  Generally if µ ≠ 1, the stable root
of the system is not close to one even if  σ = 1.

Note, though, that the discussion above has not checked whether a steady state exists in the
limiting cases considered.  In fact, they often do not.  As a check on these analytical methods,
therefore, we present below graphs of results of some numerical calculations.  We will see that
there is often no steady state when σ or α is near one.

The first figure below shows contours for the single stable root of the linearized system as a
function of  µ and σ with γ δ β θ α= = = = =2 93 95 1 5, . , . , , .  .  These parameters are chosen to be
more or less realistic for an annual time unit.  Note that there is a region in which the root is
above .95 (even above 1 over part of the region).  Most of the region is within the rectangle in
which σ lies between -.1 and +.2, with the range of σ values in the region slightly widening as µ
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increases.  This result is quite sensitive to the choice of α.  The second plot shows the effect of
changing toα =.3 .  In this plot roots drop away from one more rapidly as σ decreases.  The band
in which roots exceed .95 requires σ >.2 .  If we interpret actual income shares as reflecting
competitive market determination of factor prices, the α value of .3 is more realistic.  Values of
α larger than the observed market share of capital are sometimes justified by a claim that some of
observed labor income is actually a return to human capital.  Of course if this is so, then a single-
capital good model like this one will be a bad approximation, unless human and physical capital
are nearly perfect substitutes.

In the remaining figures other parameters are changed, in directions that make the martingale-like
behavior of consumption an increasingly good approximation.  By the last figure, we have made
nearly the entire region where µ < 125.  or σ > −.25 display unit-root-like behavior.  But to do

this we have had to make γ  higher than is usually thought to be realistic.

It seems fair to conclude from these plots that, with conventionally “reasonable” assumptions
about risk aversion and the discount factor, the martingale-like behavior of consumption
predicted by the permanent income hypothesis is a good approximation for aggregate data only
when capital and labor are highly substitutable.
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Stable Root as a Function of µ and σ, α=.5
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Stable Root as a Function of µ and σ, α=.3
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Stable Root as a Function of µ and σ, α=.5, γ=4
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Stable Root as a Function of µ and σ, α=.3, γ=4, A=.5
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Stable Root as a Function of µ and σ, α=.3, γ=2, A=.1
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Stable Root as a Function of µ and σ, α=.3, γ=12, A=.5
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