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Answers to Stochastic Decentralization Problem


[Note that the Matlab file that was handed out with the problem set on the web, while possibly useful in showing techniques for setting up and manipulating the matrices that are needed for input to gensys, contained errors in coefficient values.]


The first task is to find the deterministic steady state.  And to find that, we must find the FOC’s of the two types of agent (firm and individual).  The individual FOC’s are, applying a stochastic Lagrange Multiplier approach with ( as the multiplier on the individual constraint and ( the multiplier on the firm constraint, 


Individual:


� EMBED Equation  ���	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �1�]�


� EMBED Equation  ���:	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �2�]�


Firm:


� EMBED Equation  ���	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �3�]�


� EMBED Equation  ���	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �4�]�


� EMBED Equation  ���	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �5�]�


[Note that we are using square brackets for equation numbers on this answer sheet, while round-bracketed numbers refer to the original problem sheet.]


We solve for deterministic steady state, on the assumption that one exists in which all variables, including Lagrange multipliers, are constant, by suppressing time subscripts to obtain the new equation system


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �6�]�


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �7�]�


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �8�]�


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �9�]�


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �10�]�


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �11�]�


Equations � gotobutton ZEqnNum662064 � ref ZEqnNum662064 \! �[6]��-� gotobutton ZEqnNum128583 � ref ZEqnNum128583 \! �[11]�� correspond to � gotobutton ZEqnNum813399 � ref ZEqnNum813399 \! �[1]��-� gotobutton ZEqnNum947178 � ref ZEqnNum947178 \! �[4]�� above plus the two constraints, (2) and (4), from the problem statement.  Equation � gotobutton ZEqnNum523059 � ref ZEqnNum523059 \! �[5]�� is omitted because in steady-state form it is identical to � gotobutton ZEqnNum624467 � ref ZEqnNum624467 \! �[2]��.


The resulting system has seven unknowns and, because one equation has turned out to be redundant, only six equations.  Using the fact that � EMBED Equation  ��� and that � EMBED Equation  ���, we can use � gotobutton ZEqnNum189225 � ref ZEqnNum189225 \! �[7]�� to determine � EMBED Equation  ��� and � gotobutton ZEqnNum378994 � ref ZEqnNum378994 \! �[9]�� to determine � EMBED Equation  ���.  Then � gotobutton ZEqnNum007048 � ref ZEqnNum007048 \! �[11]�� determines � EMBED Equation  ��� and � gotobutton ZEqnNum402205 � ref ZEqnNum402205 \! �[10]�� in turn determines � EMBED Equation  ���.  Equations � gotobutton ZEqnNum055798 � ref ZEqnNum055798 \! �[6]�� and � gotobutton ZEqnNum992473 � ref ZEqnNum992473 \! �[8]�� play no role except to determine the steady-state Lagrange multipliers, which appear nowhere else in the steady-state system.  So we have a complete solution for the steady state, solved analytically.  (It is important to note here that � gotobutton ZEqnNum378994 � ref ZEqnNum378994 \! �[9]�� does have an analytic solution for � EMBED Equation  ���, even though we didn’t write it out.)  The only gap is that we solve only for � EMBED Equation  ���, not for the two separately.  So each choice of a value for � EMBED Equation  ��� (over some range) will be consistent with a steady-state solution for the system.  As we change � EMBED Equation  ��� the only aspect of the steady state that varies is � EMBED Equation  ���.  


Using � gotobutton ZEqnNum770158 � ref ZEqnNum770158 \! �[1]�� and � gotobutton ZEqnNum371764 � ref ZEqnNum371764 \! �[3]�� to eliminate the Lagrange multipliers from the system, we get a set of 5 equations in 5 endogenous variables, plus two exogenous variables (Y and A) and three endogenous error terms (arising when we eliminate the expectation operators in � gotobutton ZEqnNum940464 � ref ZEqnNum940464 \! �[2]��, � gotobutton ZEqnNum299336 � ref ZEqnNum299336 \! �[4]��, and � gotobutton ZEqnNum812747 � ref ZEqnNum812747 \! �[5]��).  Linearized around steady state, these equations have the form


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �12�]�


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �13�]�


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �14�]�


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �15�]�


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �16�]�


To keep things simpler, we pick the steady state with � EMBED Equation  ��� to linearize around, and we introduce the notation � EMBED Equation  ���.  Putting the variables in the order � EMBED Equation  ���, the linearized system can be written in matrix form as


	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �17�]�


Now we find numerical values for the unknown steady-state parameters in � gotobutton ZEqnNum753942 � ref ZEqnNum753942 \! �[17]�� so as to put all the matrices in numerical form.  The problem gave � EMBED Equation  ���, � EMBED Equation  ���, � EMBED Equation  ���, � EMBED Equation  ��� and � EMBED Equation  ���, but you need also to assume a value for (.  Let’s take � EMBED Equation  ��� for simplicity.  Then the matrices appearing in � gotobutton ZEqnNum646068 � ref ZEqnNum646068 \! �[17]�� are, in order of appearance


    1.3481         0         0   -0.0400         0


         0         0    1.0000         0         0


g0:      0         0    1.0000   -0.0400         0


    1.0000         0   -1.0000         0   24.0000


         0    1.0000    1.0000         0  -24.0000





    1.3481         0         0   -0.0417         0


         0   -0.0220    1.0000         0         0


g1:      0         0    1.0000   -0.0417         0


         0         0         0         0   25.0000


         0    1.0417         0         0  -25.0000





            0.0400         0


     0.1360         0


psi: 0.0400         0


     0         1.0000


     1.6275         0





     1     0     0


     0     1     0


pi:  0     0     1


     0     0     0


     0     0     0





Using these matrices as input into gensys, we find that there is a unique stable solution to the system.  There are three unstable roots, two of � EMBED Equation  ��� and one larger.  There are two non-explosive roots, 1.0 and .8927.  The root of 1.0 reflects the indeterminacy of steady-state S and (.  The  impact matrix calculated by the program is


    0.2244    0.1379


    1.4030    0.8621


    0.2799    0.1320


    5.3691    3.2991


    0.0023    0.0414


and the G1 matrix is





    0.0000    0.1436    0.0000    0.0000    0.0000


    0.0000    0.8980    0.0000    0.0000    0.0000


    0.0000    0.1791    0.0000    0.0000   -1.0000


    0.0000    3.4365    0.0000    0.0000    0.0000


    0.0000    0.0015    0.0000    0.0000    1.0000


Note that this G1 matrix implies that the lagged level of S has no impact on current C, K and Q; only lagged K matters for these two variables.  That is, the first two rows of G1 and the fourth are non-zero only in the second column.  It is easy to verify that the pattern of zeros in G1 will be preserved when we take powers of G1 also.


The last part of the exercise asked you to solve the planner’s problem and compare its solution to the solution above.  The planner’s problem does not contain C, Q, or (, and it contains the single social resource constraint


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �18�]�


The objective function as that of the individual in the decentralized problem.  The FOC’s are


� EMBED Equation  ���	� EMBED Equation  ���	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �19�]�


� EMBED Equation  ���	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �20�]�


The steady-states are the same as before for C and K.  Eliminating ( and linearizing, we get


	� EMBED Equation  ��� .	� macrobutton MTPlaceRef � seq MTEqn \h �[� seq MTEqn \c �21�]�


Using these matrices in gensys we emerge with existence and uniqueness again, and with one unstable root matching the most explosive one in the decentralized system and a stable root matching the stable root of that system.  The impact matrix for this problem is


    0.2244    0.1379


    1.4030    0.8621 ,


which matches the upper two rows of the impact matrix for the decentralized problem.  That is, the contemporaneous impact of the two shocks on C and K is the same as in the decentralized problem.  The G1 matrix for this problem emerges as


    0.0000    0.1436


    0.0000    0.8980


Note that, as in the decentralized problem, only lagged K matters for current C and K, and also that the coefficients on lagged C and K match those in the first two equations (which determine C and K) in the decentralized problem.  Thus the equations determining C and K from lagged K and current shocks are exactly the same in the two systems.


It is not true, however, that the full non-linear solution of this model would show that decentralizing with a single traded asset reproduces the planner’s solution.  The planner evaluates returns to investment according to equation � gotobutton ZEqnNum031322 � ref ZEqnNum031322 \! �[20]��, in which the consumer’s marginal utility ( is used to discount random future investment returns.  The firm in the decentralized problem evaluates investment returns according to � gotobutton ZEqnNum617809 � ref ZEqnNum617809 \! �[4]�� instead, in which the firm’s marginal utility of dividends ( is used to discount random future investment returns.  Because these two Lagrange multipliers are not in general perfectly correlated, the firm will evaluate risk differently from the consumer, and this makes the equilibrium fail to be efficient.  The linearized models are valid only for small variances of disturbances.  The effects of risk aversion on investment decisions are “second-order”, which is why they disappear from the linearized model.  Clearly one would not want to study the effects of increased risk on savings and investment behavior with either of these linearized models.  


