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Road map

• We are aiming to be able to discuss the models and results in the papers
listed in Topic 4, FTPL in Keynesian Models, in the newly revised version
of the course syllabus.

• In the models we have looked at so far, it has been possible to reduce the
main work of solution to studying a one-dimensional differential equation.
In other words, these models could be arrange to have a single state
variable.

• Realistic New Keynesian models with active fiscal policy, in which raising
interest rates reduces inflation, the price level has smooth time paths,
and increasing primary deficits increases real debt, require more complex
models.
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The canonical continuous time, linear, perfect foresight
model

Γ0Dy = Γ1y + C

ΘΓ0y0 = z0 .

The Θ matrix is usually a selection matrix (all zeros but for a single 1 in
each row) that defines the backward-looking equations. The z0 vector is the
vector of values inherited from the past at time zero. D is the differential
operator: Dy = ẏ, D2y = ÿ, etc.
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What gensys will do for you

• You give it a system in the canonical form.

• It returns a system in the form

Dyt = Gyt + c

whose solution paths for y that satisfy the original equation system, but
also have the property that their solution paths are stable.

• It does this by enforcing relations among the elements of the y vector.

• One can think of this as pinning down the rest of the y0 vector, the part
left indeterminate by the ΘΓ0y0 = z0 condition.
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Additional details

• There may be no solution (non-existence) of this form, and it may also
be that enforcing stability does not generate enough linear restrictions to
fully determine y0 (non-uniqueness). gensys will flag these situations.

• If (as might be true if your stability condition comes from transversality)
you want to allow exponential growth, so long as it is below some rate
β, gensys will let you specify β.
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Preprocessing

• If you are starting with a nonlinear model, finding the steady state and
calclulating the derivatives needed for a linearization can be a lot of
work, prone to error.

• The gensys package includes programs that will let you specify a model
as a set of nonlinear equations, labeled if forward-looking, then let the
computer find the steady state and construct the linearization.

• The DYNARE system will do the same thing, and more, for discrete time
models.

• DYNARE works in Matlab. The current gensys works in R.
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How is it done?

We’ll show how it works in the special case where Γ0 is non-singular.
There can be perfectly reasonable systems with singular Γ0, and gensys

handles them properly, but that more general case makes for messy algebra.

Multiplying the system by Γ−10 leads us to

Dyt = Γ−10 Γ1yt + Γ−10 C = Ayt + h .

We’ll avoid some more algebra by assuming that A has a Jordan
decomposition

A = PΛP−1

with Λ diagonal. In general, there can be ones on the first diagonal above
the main diagonal in the Jordan decomposition, and the software handles
that situation.
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Transforming to a stack of univariate equations

Multiplying the system on the previous slide on the left by P−1 and
letting x = P−1y leads us to

Dxt = Λxt + P−1h .

This is now a stack of univariate linear ODE’s (ordinary differential
equations). If the i’th element of the diagonal of Λ is λi, then those
equations in which λi > 0 imply time paths for xi(t) that explode
exponentially unless xi(t) ≡ −P i·h, where P i· is the i’th row of P−1.

7



Deriving stability conditions

Let’s arrange the equations so that all the λi > 0 cases are at the
bottom. We’ll use the notation P 2· for the rows of P−1 that correspond to
these unstable roots λi > 0. Then to enforce stability on the solution, we
require

P 2·y ≡ −P 2·h .

This, along with the initial conditions, let us fully determine y0 via[
ΘΓ0

P 2·

]
y0 =

[
z0
−P 2·h

]
.
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Existence and uniqueness

The last equation on the previous slide, which was said to “determine
y0”, obviously can only do so if the matrix[

ΘΓ0

P 2·

]
is square and non-singular. In particular, the matrix must have full column
rank if it is to fully determine y0, and full row rank if it is to yield a solution
for y0 for arbitrary z0 and h. That the system determines y0 uniquely is the
“uniqueness” property of the solution, and that it has a solution at all for
arbitrary initial conditions is the “existence” property.
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Root counting

In most models, we fail to have existence if the number of “excessively
explosive” roots is more than n, the total number of equations, minus m,
the number of backward-looking equations. We fail to have uniqueness if
the number of excessively explosive roots is less than n−m. But these are
just rules of thumb to ensure the matrix is square. One can’t be sure about
this without calculating the matrix itself to check rank.
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Exogenous shocks

When we consider discrete time systems, we will include stochastic
disturbances from the start, even in nonlinear systems. For continuous time
nonlinear systems, adding stochastic disturbances takes us into technical
weeds that we have avoided. But for linear systems, adding white noise
shocks is pretty easy.
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What is white noise?

• It would be a serially uncorrelated process εt, such that E[εtεs] = 0 for
all t 6= s, except that there is no such thing.

• We use a white noise process εt to define ordinary processes that have
values at given times by averaging εt over intervals. So a standard white
noise process is an εt satisfying

E

[∫ b

a

εt fddt ·
∫ d

c

εt dt

]
= length([a, b] ∩ [c, d]) .

for any pair of intervals.

12



ODE’s with white noise disturbances

If we tack a white noise onto the end of a univariate first order ODE,
we get

ẏ = −ay + εt , whose stable solution is, if a > 0

yt =

∫ ∞
0

e−asεt−s .

The yt defined this way is an ordinary stochastic process with continuous
(but not differentiable) time paths. It satisfies Cov(yt, yt−s) = (1/a2)e−|s|.
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Adding ε’s to our perfect-foresight models

• We can add white noise disturbances to the right-hand sides of the
equations defining our linear rational expectations systems, and interpret
our solutions as showing how y is “driven” by the exogenous disturbances.

• The solution mechanics are unaffected by whether or not we include
disturbances.
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