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EXERCISE ON NATURAL RESOURCES, LM’S, TVC’S

Consider the model with a representative agent who uses capital and an exhaustible
natural resource in a constant-returns-to-scale technology to produce consumption and
investment goods. Formally, the agent solves

max
C,K,R

E

[
∞

∑
t=0

βtU(Ct)

]
subject to (1)

Ct + Kt ≤ AtKα
t−1R1−α

t + Kt−1 (2)
St = St−1 − Rt (3)

St ≥ 0 (4)
At = At−1εt . (5)

Here Rt is resources used up in period t, St is the stock of resources remaining after pro-
duction at t, and C and K are as usual consumption and capital. At is the level of technol-
ogy at t, and εt is an i.i.d., positive random variable with E[εt] = 1. The appearance of K
on the right-hand side of (2) with a coefficient of 1, rather than 1− δ, means that there is
no depreciation of capital.

(a) Note that if the stock of resources is ever exhausted (there is a t at which St = 0),
no production is possible thereafter and consumption must shrink to zero after
that. (More precisely, the sum of all consumption after that is finite.) Nonetheless
if there is no shock (εt ≡ 1), it is feasible, given any initial capital stock K0 and any
initial stock of resources S0, to choose paths of the choice variables so that Ct > C̄
for all t, for some C̄ > 0. Prove this.

The statement of this part of the problem left out a key assumption: α > 1
2 . Without

this side condition it is still possible to make Kt → ∞, but it is not possible to do so
with Ct bounded away from zero. Solve the constraint for Rt, assuming C and A are
constant:

Rt =

(
C + Kt − Kt−1

AKα
t−1

) 1
1−α

. (∗)

First note that if K shrinks monotonically from some date onward, then Rt is bounded
below from that date onward and thus does not have a finite sum. Next suppose that
It = Kt−Kt−1 is always positive, but converges to zero as t → ∞. Then the constant C
term in the numerator on the right of (∗) dominates in the limit and the whole expression
behaves as (

C
AKα

t

)1/(1−α

. (†)
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Now suppose Kt is, after some date t, equal to tγ for some γ > 0. Then the expression
above is O(t−γα/(1−α)). To be consistent with our assumption that It → 0, we must
have γ < 1. For ∑ Rt < ∞ we require that the exponent on t in the denominator
exceed 1. This will be true for some γ < 1 if α/(1− α) > 1, i.e. if α > 1/2. So we
have shown that there is a time path for K such that ∑ Rt < ∞ when α > 1

2 .
It is not hard to see that choosing Kt = tγ for γ > 1 will not relax the constraint on α.

In this case we will have It = O(tγ−1), and this makes Rt = O(tγ−1/(1−α)). This may
make R summable if α is large enough, but with γ > 1 it will never make R summable
for α ≤ .5.

This does not constitute a complete proof that α > 1
2 is necessary for maintaining

C bounded away from zero, because we have considered only possible K paths of the
form tγ. However for the case α > 1

2 we have given an example of a path for k that
makes ∑ Rt finite. If this particular path makes the sum exceed the initial endowment
S−1, we can simply multiply the C, I and K time paths by a constant less than one.
As can be seen from (∗), this scales down the whole R path, and by scaling it down
enough, we can make the sum of the R’s less than S0. Of course the scaling will not
actually affect the initial K−1. If we’re not allowed to throw away capital, we can just in
the first period t = 0 make C0 large enough so that from then onward we are on the
scaled down path.

(b) Derive the Euler equations and the TVC for this problem (not assuming εt ≡ 1).
We assume that the St ≥ 0 constraint is never binding (since if it ever were, the

objective function would be −∞). We also treat the St = St−1 − Rt constraint as if it
were a ≤ inequality, rather than an equality. This does not change the problem, since
obviously we would never want to throw away resources and therefore would always
keep the constraint binding. Euler equations:

∂C : U′(Ct) = λt

∂K : λt = βEt

[
λt+1

(
αAt+1

(
Kt

Rt+1

)α−1

+ 1

)]

∂R : λt(1− α)At

(
Kt−1

Rt

)α

= νt

∂S : νt = βEtνt+1

The conditions for applying the standard TVC are met, including the non-negativity
constraints that let us separate the TVC into a piece applying to S and a piece applying
to K. They are

∂K : E[βtλtKt] = E[βtKtU′(Ct)] → 0

∂S : E[βtνtRt] = E[βt(1− α)(Ct + It)U′(Ct)] → 0 .
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(c) Assuming εt ≡ 1, U(Ct) = C1−γ/(1− γ) (CRRA utility), 0 < β < 1, γ > 0, and
0 < α < 1, show that no time path of the choice variables that maintains Ct > C̄ > 0
can be an optimum.

With this utility function, the K Euler equation can be rewritten as

β−1 = Et

[(
Ct

Ct+1

)γ
(

αAt+1

(
Kt

Rt+1

)α−1

+ 1

)]
.

To maintain a positive lower bound on C, we must prevent K → 0, Yet to satisfy the
resource constraint we must make Rt → 0. Therefore the Kt−1/Rt term in the above
equation goes to infinity, and the term itself is raised to the power α − 1 < 0, so for
large t, this expression says that Ct is expected to shrink at the rate β1/γ. Obviously if
Ct > C̄ > 0 for all t, this condition must eventually be violated.

(d) Can you propose a form for U(Ct) that would make it possible for paths with
Ct > C̄ > 0 to be optima, with the other assumptions as in part (c)?

The Euler equation requires that the marginal utility of consumption increase at an
exponential rate eventually, as the rate of return to capital approaches zero. The CRRA
utility forms can drive marginal utility to infinity exponentially only by driving C itself to
zero exponentially. In applied work a common way to put a lower bound on C is to
assume that there is a subsistence level of consumption C∗ and that utility is U(Ct −
C∗). If U has the CRRA form, and C∗ > 0, marginal utility will go to infinity as Ct
approaches C∗ from above. If we pick C̄ > C∗, the type of paths we derived in the first
part of this problem will deliver a level of discounted utility greater than −∞, whereas
any path that fails to satisfy Ct > C∗ for all t will deliver minus infinity utility. The optimal
path, whatever it is, must then deliver utility greater than minus infinity (since we know
such paths exist) and therefore must keep Ct > C∗.

(e) Would the conclusions change if capital depreciated? if production were CES, i.e.
At(αKσ

t−1 + (1− α)Rσ
t )1/σ with σ 6= 0, σ ≤ 1, instead of Cobb-Douglas?

With δ > 0, at any given level of R, there is a maximum level of K, above which total
production cannot cover depreciation, so that next period’s K is less than this period’s
K even with C = 0. Thus it is impossible to keep K growing forever, and thus impossible
to offset the necessarily declining R with increasing K. In a CES production function
with 0 < σ < 1, either of the two inputs (K and R) can be set to zero and output remains
positive if the other input is non-zero. Thus in this case the resource can be exhausted
(and optimally will be exhausted) in finite time, while Ct remains bounded away from
zero forever. With σ < 0, at any given level of R there is an upper bound on output, and
this upper bound shrinks linearly with R for large K. Thus it is not possible to maintain
C by driving K up while R shrinks. These results reflect the fact that the isoquants of a
CES production function cut the axes for σ ∈ (0, 1], while they remain bounded away
from the axes when σ < 0. For the Cobb-Douglas case σ = 0, they approach the axes
asymptotically.
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(f) Is it possible for εt to be stochastic and still preserve the conclusion that paths with
Ct > C̄ > 0 are feasible?

Not with the assumptions we have made on εt. If εt is not identically one, then it has
some probability of being less than some number φ < 1. Though the probability may
be small, there is then non-zero probability of arbitrarily many draws in a row of εt’s less
than φ. This means there is non-zero probability of At eventually being arbitrarily close
to zero, and staying there arbitrarily long. Whatever our initially chosen C̄, if A gets
small enough and stays small long enough, we must eventually start shrinking K, and
indeed K can therefore become arbitrarily small with non-zero probability. As K → 0,
the level of consumption that we can sustain forever goes to zero. So whatever C̄ we
tried to commit to, there is a non-zero probability that we will have such a string of bad
luck that we will be forced to cut consumption below C̄.


