
Econ. 552b Spring 1996 Chris Sims

Take-Home Answers
1.  A prior p.d.f. that is uniform over 0 < α,β < 1, α + β  < 1, and integrates to a probability of .8
must have height 1.6, as the area of the region to be integrated over is .5.  The height of a uniform
prior p.d.f. along α + β =1, 0 < α < 1 that integrates to .2 depends on what the index of
integration is.  It may seem natural that since the length of the line integrated over is 2 , the
p.d.f. height should be .2 2 .  But actually it is probably most convenient to parameterize the
line by setting β = 1-α (or vice versa) and then to integrate with respect to α.  In that case the
appropriate p.d.f. height for the prior is just .2.

The likelihood has the shape of a multivariate t.  The problem didn’t say how to treat the constant
term γ, but is was natural to assume this had a flat prior, so that one just integrates it out to get
the posterior on α and β, which will still be multivariate t, in form.  A somewhat less natural way
to handle this was to pretend γ was known and fixed.  If z=(x,y) has a bivariate t distribution with
n-3 degrees of freedom (as would emerge as the likelihood shape from our regression model with
n observations and three estimated parameters) with covariance matrix Σ, its p.d.f. is proportional
to

( ) ( )/n z z n− + − − −3 1 1 2Σ (A.1)

For later reference, the formula for the p.d.f. of a d-dimensional vector t with mean zero,
covariance matrix Σ, and a multivariate t distribution with degrees of freedom η, is (adapted from
Robert, p.382)
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I was surprised to note that Gelman, et al, does not contain the full formula with scale factor, only
the last part, which is all that depends on t.  For this problem you do need the full formula, and
allowances were made for the fact that it is hard to derive and not in one of the two standard
textbooks for the course.  (It is in other widely available references, though.)  If we set
$ $ $µ α β= − −1 , and let x = −α α$ , y = −β β$ , then along the line α β+ = 1, y x= −$µ , and as a

function of x, (A.1) can be rewritten as
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While messy looking, (A.3) is nonetheless a quadratic function of x raised to an integral multiple
of − 1

2 , so it is in the form of a univariate t.  We need only (!) find what its scale factor is to
integrate it.  Collecting terms and completing the square, (A.3) becomes
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This is proportional to the p.d.f. of a univariate t with n - 2 degrees of freedom and mean and
variance parameters
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However (A.4) represents the standard form scaled by the factor
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The product of (A.7) with the scale factor in (A.2) specialized to our case of n - 3 degrees of
freedom, covariance matrix Σ, would provide the posterior probability of α + β = 1 if we had a
flat prior, the height of the prior p.d.f. on this line were 1, and there were no restrictions on the
range of the continuous part of the posterior distribution.  To specialize to our case, we must
consult a t table to find the probability that a t with n - 2 degrees of freedom lies in
− −m s m s,( )1b g , with m and s defined by (A.5) and (A.6), and multiply that by .2, getting a

number we’ll call p1 .  Then we must simulate a bivariate t with n - 3 degrees of freedom and

covariance matrix Σ, finding the proportion of draws that fall in the region t1 > − $α , t2 > − $β ,
t t1 2+ < $µ , and multiply this probability by 1.6, getting a number we’ll call p2 .  The posterior
probability of α β+ = 1 is then p p p1 1 2+b g .
An alternative approach could have been based on Gibbs sampling.  For any given value of α, the
conditional likelihood as a function of β has the form of a univariate t with n - 2 degrees of
freedom, though with mean and variance parameters that will differ for every α.  The conditional
distribution of β is then a truncated univariate t together with a discrete weight on β α= −1 .  The
probability in the truncated t region and on the discrete point can be computed analytically.  A
monte carlo draw from this distribution is then easy to form.  Conditioning on this draw for β, we
then do the same sort of thing for α, etc.  The posterior probability on α β+ = 1 is then estimated
as the proportion of draws for which the equality holds exactly.



The algebra here was forbidding in spots, but it was disappointing that most answers did not even
get to the point of correctly describing what needed to be calculated.

2.  This was an essentially standard stopping rule problem, which few answers seemed to
recognize.  Since sufficient statistics were being reported, it was possible to construct the
likelihood, and the principle in stopping problems is that if the rule for stopping makes sample size
a function of the data sequence, the likelihood function has the same form as if the sample size is
non-random.  Thus in the first example Bayesian conclusions are the same as if the sample size
had been deterministic, whether observed sample size is 87 or 150.  The second example is
trickier.  The stopping rule is a function of the data only.  We are being given only the results
associated with the larger of two estimates.  Certainly we would not treat the OLS estimate and
its standard error as providing the same kind of evidence as if there were a single sample being
analyzed.  The interesting question is whether our inference here would be different from the case
where, with a deterministic sample size, just the larger of two OLS estimates were reported to us.
It might seem that this should be the case, but since we are not being given sufficient statistics, the
usual argument that the likelihood function has the same form for fixed N as for an N determined
by the data does not apply.  I’m pretty sure that it actually does not apply, from considering
simple binomial examples, but haven’t proved it.

No exam gave a careful discussion of any well-defined classical inferential procedure for the
problem.  One could, for example, consider a likelihood-ratio test for the null of β = 0.  Because
the likelihood function itself depends only on the t-ratio or (if you take the variance as known) the
value of β, a likelihood ratio test will also pay no attention to the sample size, only to the usual
test statistic.  However, the classical distribution theory for this test statistic will not be standard.
If the variance is unknown, the distribution for the t ratio depends on the unknown variance in a
nasty way, making a test of the null of β = 0 without a restriction on the variance parameter
difficult to handle.  In the simple special case of X ≡ 1, so we are estimating a mean, and with
σ = 1, the distribution of the sample mean at the stopping point is a mixture of distributions
concentrated on $β > 1, contributed by the possibility of an early stopping time, with a distribution

that is skewed toward negative $β ’s, which is the form of the distribution conditional on stopping

at T = 150.  The negative skewness comes from the fact that on sample paths that lead to a $β
close to 1 at T = 150 if we ignored the stopping rule, the odds are good that the data collection
would have stopped before T = 150.  Because we are mixing these two distributions with
opposite skewness, the question of whether a classical hypothesis test is more or less likely to
reject the null with a given observed $β  than would be a classical test that ignored the stopping
rule is quite subtle.  No answer recognized that the fact that the sampling could go on to T = 150,
and that at that point test statistics would be “biased” downward under a null of β = 0 ,  has
strong effects on classical inference for situations where actual T is below 150.

3.  Since

vec B I vec( ) ( ) ( )= − ⊗ Γ Π  , (A.8)



the Jacobian of the transformation from Γ,Β to Γ,Π  is Γ q , where q is the number of columns in
Π and Β, i.e. the number of predetermined variables.  This means that the joint p.d.f. for Γ,Π is
f d dq( , )Γ ΓΠ Γ Γ Π− ⋅ .  Contrary to what the problem statement implies, this transformation does

not introduce any non-smoothness into the density.  I had the signs of my exponents mixed up
when I formulated the problem.  What it does instead is introduce zeros in the p.d.f. at
singularities in Γ.  In fact, it is in the case where we start with a smooth prior g( , )Γ Π  on Γ,Π and

derive the implied prior on Γ,Β that the Jacobian becomes Γ −q  and we end up with singularities

in the prior p.d.f. on Γ,Β.  Because Π Γ Β= −1   explodes as Γ approaches singularity for any given
non-singular Β, we don’t generally have singularity for g q( , )Γ Γ Β Γ− − −1  at every point where Γ is
singular, but we do have singularity at any point where Β has a rank deficiency matching that in Γ,
so that Γ Β−1  is bounded despite the singularity in Γ.  This probably does not make sense.  If Γ
approaches singularity, we do not expect Π to remain nicely behaved, because of its origin as
− −Γ Β1 .  A smooth prior on Γ and Π jointly implies unreasonably that we think it likely that Γ and
Β approach row-rank deficiency together in this way.  In a supply and demand model, for
example, a backward-bending supply curve of nearly the same slope as the demand curve implies
that small shifts in supply  or demand are likely to produce large changes in quantity and price.
To make the prior smooth in Γ and Π implies that instead the coefficients on the shifting variables
are likely to be close in these circumstances, so that anything that shifts demand is likely to shift
supply by almost the same amount, resulting in little change in price and quantity.

On the other hand, the Γ q  term in the implied prior on Γ,Π tends to give this p.d.f. fat tails --
very large Π’s associated with near-singular Γ’s are fairly likely.  When Π is large, the implied
amount of variability in y is large.  This means that we are putting fairly high probability on
observing erratic behavior in the y’s, and this may not be reasonable.

Thus there is no single right answer to this question; a good answer would have discussed some
of the considerations above.

4.  The likelihood is
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This is derived by substituting into the normal density and using the Jacobian of the log
transformation.  Because of time pressure (I’m about to leave town for two weeks) I can’t give
you a complete argument here.  However the crucial steps are as follows.  First we need
consistency.   This is a hard argument, and it would have been OK just to assume consistency.
OLS is easily shown to be consistent, which implies that any Bayesian posterior mean from a
proper prior is consistent, but the MLE is here not a posterior mean under a proper prior.  For



asymptotic normality, we must verify that the high-order terms in a Taylor expansion of the log
likelihood around the MLE are of vanishing importance for the likelihood level in large samples.
The linear term in the log likelihood is not a problem, which some of you did not realize.  The
MLE by construction has no linear term in its Taylor expansion.  The problem is only
appropriately to bound the high order terms.  This could be done by examining the behavior of
third derivatives, for example, or else by directly examining the dependence of the second
derivative on the deviation from the MLE.  If you assume the X’s are bounded, the third
derivatives are bounded except in the neighborhood of ε = -1.  Since the p.d.f. goes rapidly to
zero in this range, it is not hard to construct an argument that the third derivatives are bounded
with high probability, and this in turn justifies the Taylor approximation for parameter values not
too far from the MLE.  A complete argument would then also show that for parameter values
more than any fixed distance, say δ, from the MLE, the likelihood becomes small relative to its
value near the MLE.


