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EXERCISE ON COINTEGRATION, GCP

(1) Losing information from initial conditions Consider the estimation of the mean
µ from a sequence of N observations on Xt, which are drawn from a stationary
Gaussian univariate process with autocovariance function

σ2ρ|s|

1− ρ2 .

(X is an AR(1), in other words.) A crude way to estimate µ is to just take the sample
average,

X̄ =
1
N

N

∑
t=1

Xt .

This is unbiased, but not efficient. It does happen to be asymptotically efficient be-
cause of the special character of the exogenous variable in the regression: a vector
of ones.

Another simple asymptotically efficient estimator (assuming ρ is known) is to
take the sample average of (1− ρL)Xt and divide by 1− ρ:

µQD =
1

(1− ρ)(N − 1)

T

∑
t=2

Xt − ρXt−1 .

(QD stands for “quasi-differenced”.) While this is asymptotically efficient, it ig-
nores information available in the first observation.

The fully efficient estimator is GLS, using the covariance matrix of the observa-
tions

Ω =
1

1− ρ2

[
ρ|i−j|

]
.

to construct the maximum likelihood estimator. We’ll call this estimator µGLS,
since it is a special case of generalized least squares estimation.

Calculate and plot, for samples of size 10, 100, and 1000, the ratios of the stan-
dard deviations of µQD and µGLS to the standard deviation of X̄, as a function of
ρ. Note that for |ρ| ≥ 1, Xt cannot be a stationary process and thus has no fixed
mean, while the interesting behavior of these ratios is likely to be for values of |ρ|
near 1.

[Why is X̄ asymptotically efficient here? OLS is efficient whenever the T × k X
matrix lies in the space spanned by k eigenvectors of Ω. The constant vector is not
an eigenvector of Ω in this problem, but it is close to being one, and gets closer to
being one as sample size increases.]

[It is possible to derive formulas for the variances of all three estimators as func-
tions of sample size and ρ, but it may be easier to use the usual matrix expressions
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from regression model theory. If you do it that way, the toeplitz function in R
or similar functions in other languages that construct a Toeplitz matrix may be
useful, as Ω is Toeplitz.]

(2) Granger Causal OrderingSuppose a 3-variable VAR (I − B(L))yt = εt has a pat-
tern of zeros in the B(L) matrix polynomial. For each of the patterns below, deter-
mine whether the system has any Granger causal ordering and state which vari-
ables are causally prior to (GCP to) which.

a)

x 0 0
x x x
0 x x

 b)

x 0 x
x x x
x 0 x


c)

x x 0
0 x 0
0 x x

 d)

x x 0
x 0 x
0 x x


(3) Cointegration Here is a bivariate second-order VAR system, yt = B(L)yt + εt, with

B1 =

[
1.1 0
0.3 1.4

]
B2 =

[
−.4 −.2

0 −0.2

]
.

(a) Show the system is non-stationary.
(b) Show that it is cointegrated.
(c) Rewrite it in VECM form. In doing this you will also display the coefficients

of the cointegrating vector — the coefficients in a linear combination of the
elements of y that is stationary.


