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The model

ZB x(t—s)+e(t),

n><1

where ¢(t) is the innovation in the x(t) vector.



Stacking

We can always rewrite (1)) as a first-order system in a longer data vector
y as follows:

x(t)
gy = | U @
x(t—k+1)]
y(t) = B(1) Ii(i).n ng)] y(t—1)+[€(0t)]. 3)

We define T and #(t) by rewriting (3) as

y(t) =Tyt =1) +75(t). (4)



The Jordan decomposition

[ = PAP! (5)

where A is diagonal except that there may be along its diagonal “Jordan
blocks” of the form

A1 0 0

0 A 1 0 .. 0

0 0 A 1 0] 6)
0 0 A 1
0 e, 0 A

Any column of P corresponding to the first row of a Jordan block (or to a
1 x 1 Jordan block) is a right eigenvector of I'. Corresponding rows of P~!
are left eigenvectors.



Simplifying to 1 x 1 blocks

e Jordan blocks bigger than 1 x 1 complicate the algebra without much
affecting the qualitative discussion that follows.

e They are also relatively rare in applied work. If the true model has a
bigger block, the estimated model is likely not to have exactly equal roots,
and hence all 1 x 1 blocks. However, in this case the estimated model’s
eigenvectors corresponding to the near-equal roots will be nearly the
same.

e Henceforth in these notes we assume 1 x 1 blocks. Versions of these
notes that handle the more general case are on, e.g., my 2017 ECO513
web site.



Applying the Jordan decomposition

If we define z(t) = P~ ly(¢), then (B) implies
z(t) = Az(t —1) +n(t) (7)
Every element z; of z has its own single equation in (/)),
zi(t) = Aizi(t — 1) + i (¢) . (8)

In each of these equations, we can solve by recursive substitution to obtain

t—1
zi(t) = Mzi(0) + ) Aimi(t — 1) . (9)
s=0



Root sizes

M| <1 = A = 0ast — oo. In this case, if #; satisfies
Elni(t+1)|x(t—s), alls >0] =0

for all t and 7; has constant, finite variance, we can let the date of the initial
condition in (9) recede into the past and obtain the limiting result

zi(t) = ) Aimi(t —s) . (10)
s=0



Stability

If all the ;’s are i.i.d. (for example — weaker assumptions would
suffice), then z;(t) clearly has the same distribution for all . This kind of
z; is called stationary or stable. If instead |A;| = 1, then |A?| remains at

one in absolute value for all p. And if |A;| > 1 A! grows exponentially in
absolute value.



Complex roots

If any A; is complex, then (assuming I is itself real), A}, the complex
conjugate of A;, also appears on the diagonal of A, exactly as may times as
A; itself appears, and the corresponding columns of P and rows of P~! are
conjugates of each other. Complex roots A; generate oscillatory behavior in
the corresponding z;(t).



Implied properties of i

But now from the definition of z we know that y = Pz, so we know that
y is a linear combination of elements of z. Thus we can conclude that

.. If all the A; are less than one in absolute value, y itself, and hence x, is
stationary (being a sum of stationary z;’s).

ii. If at least one of the A;’s is equal to one in absolute value, and none
exceed one in absolute value, the initial condition term in[9}, A!z(0) does
not get smaller with increasing ¢. (A larger Jordan block with |A;| = 1
generates components that increase in size at polynomial rates)

iii. If any of the |A;|'s exceeds one in absolute value, y(t) contains
components that explode exponentially as t — oo.



Interpreting eigenvectors

Often it is useful in interpreting a model to examine the eigenvectors
(columns of P and rows of P~1) corresponding to various types of roots. For
example, in data including several nominal variables (prices, wages, money
stock, current-dollar GDP, etc.) in a country with high and variable inflation,
we might expect one unstable root to correspond to the aggregate price
level, contributing a non-stationary component to all the nominal variables.
The ratios of nominal variables to each other, on the other hand, might be
expected to be stationary. This implies that we should find one |z;| > 1
and that the corresponding row of P~! should put positive weight on a set
of nominal variables. Also, if the variables are all measured in logs, the
corresponding column of P should have the same number in every row
corresponding to a nominal variable in y. This would imply that nominal
variables all move proportionately in response to the unstable component.
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Cointegration

e If the largest roots in absolute value are g in number and all equal to
some A > 1, and all of them correspond to trivial (1 x1) Jordan blocks,
then g < n.

e In this case there are exactly n — g linear combinations of x (not y) that
grow slower than A,

e If A = 1, these n — g linear combinations are stationary, while the g

linear combinations are not. This is the situation known in the literature
as cointegration.
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Skeptical remarks

Cointegration is handy to know about, but the regularity condition
required to deliver it — equality and non-repetition for the largest roots
— is restrictive..

The restrictions are widely and casually imposed without grounding them
iIn any economic reasoning.

The reason is probably mainly that if one pretends one knows that there
are a given number of unit roots that don'’t repeat, frequentist distribution
theory gets much easier.

In practice, people look for models with g unit roots by experimenting —
essentially estimating 4.
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e Frequentist distribution theory implies that doing this, and ignoring
the estimation uncertainty in g, is “asymptotically justified”, because
estimates of unit roots converge much faster than estimates of stationary
roots.

e In practice, with real data, there are usually roots that are substantially
different from one that are also statistically insignificantly different from
one — so uncertainty about g is important

e Estimating g and ignoring uncertainty about it is better than differencing
everything that looks non-stationary — the latter amounts to assuming

q = n.
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VECM models

e |f there are exactly g < n non-repeating unit roots, then the VAR can be
written as
k—1
Ayr= « B yi-1+ ) BiAy.
X (1=4) (n—q) xn j=1

e The linear combinations given by pBy; will be stationary. Other linear
combinations will be non-stationary.

e Estimating such a system for given g is fairly straightforward NLLS.
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Examples

The simplest example of a system with g unit roots and more than n — g
stationary linear combinations is

There are two (repeating) unit roots in this 2 x 2 system, and nonetheless
1 stationary linear combination, y,. Other simple examples can be
constructed by taking linear transformations of this one, say

Zl(t) = 4Zl(t — 1) — 422(t — 1) — 2Zl(t — 2) + ZZQ(t — 1) + ﬂl(t) (13)
2o(8) =2z1(t —1) = 2zp(t —1) —z1(t = 2) + zo(t = 2) + m2(f) . (14)
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This system is obtained by letting z(t) = E ﬂ y(t), and it therefore also

has two repeating unit roots and one stationary linear combination, which is
here 2z,(t) — z1(t).
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Unlikely initial conditions

e As we have discussed, estimated VAR’s that do not enforce stationarity
by assuming initial conditions have the unconditional joint distribution
implied by the model often imply that initial conditions are many standard
deviations away from their steady-state values.

e Letting y* = P‘ly, the implications of “unusual initial conditions” can be
quite different depending on whether the root associated with an unusual
y;, are very close to one or not.

e A root r; with |1 —r;| < 1/T, paired with a large vy}, value, produces a
near-linear trend deterministic component, which is not unreasonable for
many economic time series.
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e With |1 —r;| > 1/T and |r;| < 1, a corresponding y;, multiple standard
deviations from its mean implies initial mean-reverting behavior that will
with high probability not be seen again over time spans several times T.
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Diagnostic checks

e One can forecast the sample data from the initial conditions, using
the posterior mean or mode parameter estimates, to see whether the
deterministic component is showing unreasonable prescience.

e One can look at the system roots and corresponding y;, values relative
to their unconditional standard deviations.
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A practical approach

Estimate the system first in levels, conditioning on initial conditions.

ii. Look for roots within 1/T of 1 in absolute value and count them.

Estimate a VECM model allowing for as many unit roots as you've
counted, using the unconditional joint distribution of the stationary linear

combinations as part of the likelihood.
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A practical approach

e Note that this does not involve frequentist testing to find the number of
unit roots — that is likely to fail to reject the unit root null for roots that
are quite a bit farther from 1 than 1/T.

e In a system with k lags, the number of stationary linear combinations is
nk — g, where n is the length of the y vector and g is the number of unit
roots.

e If there are more than n unit roots, some of them repeat (i.e. correspond
to non-trivial Jordan blocks), and the neat cointegration and VECM setup
does not apply.
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