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Model comparison as estimating a discrete parameter

• Data Y , models 1 and 2, parameter vectors θ1, θ2.

• Models are p1(Y | θ1) and p(Y | θ2). m1,m2 are the dimensions of
θ1, θ2.

• We can treat them as a single model, with pdf q(Y | (θ1, θ2, γ)), where
the parameter space for θ1, θ2 is some subset (or the whole of) Rm1+m2

and that for γ, the model number, is {1, 2}.

• Then the posterior probability over the two models is just the marginal
distribution of the γ parameter — i.e., the posterior p.d.f. with θ1, θ2
integrated out.
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Marginal data densities, Bayes factors

• The kernel of the probability distribution over model i is therefore∫
p(Y | θ1)π(θ1, θ2, i) dθ1 dθ2) .

• The ratios of these kernel weights are sometimes called Bayes factors.

• The integral values themselves are sometimes called marginal data
densities.

• The posterior probabilities are the ratios of the mdd’s to their sum —
i.e. the kernel weights normalized to sum to one.
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Notes

• Often the prior over θ1, θ2 makes them independent, in which case only
the prior pdf of θi enters the formula.

• The prior matters here, even asymptotically. With independent priors,
assuming the likelihood concentrates asymptotically in the neighborhood
of θ̄i for each model i, a change in π(θi)/π(θj) always has a direct
proportional effect on the posterior odds, even as sample size goes to
infinity.

• It is still true in a sense that the prior doesn’t matter: The posterior odds
favoring the true model will go to infinity, regardless of the prior. But
in any sample in which the odds ratio turns out to be of modest size, it
can shift to favor one model or the other based on reasonable variations
in the prior.
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• This discussion generalizes directly to cases with any finite number of
models.
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Calculating mdd’s

• This is just a question of how to evaluate an integral. For some cases,
including reduced form VAR’s with conjugate priors, this can be done
analytically.

• Suppose, though, we can’t evaluate the integral analytically, but can
generate a sample from the posterior pdf.

– Case 1: We can generate a sample from the whole posterior, over
both the continuous and discrete components. Then posterior mdd is
estimated just by counting relative frequencies of γ = 1 vs. γ = 2.

– Case 2: We can generate a sample from either model’s conditional
posterior on θi, but not a sample from the joint θ1, θ2, γ posterior.
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Case 2

• We have a sample
{
θji , j = 1, . . . , N

}
of draws from the posterior on

θi conditional on model i being correct. We also assume here that the
priors on θ1 and θ2 are independent.

• Form
{
k(Y, θji )

}
=
{
p(Y | θji )π(θji )

}
. This is the kernel of the posterior

conditional on model i being the truth.

• Pick a weighting function g(θi) that integrates to one over θi-space.

• Form
1

N

N∑
j=1

g(θji )

k(Y, θji )
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• This converges to (
∫
k(Y, θi)dθi)

−1, because

E

[
g(θi)

k(Y, θi)

]
=

∫
g(θi)

k(Y, θi)
q(θi | Y, i)dθi

=

∫
g(θi)

k(Y, θi)

k(Y, θi)∫
k(Y, θi)dθi

dθi
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Choosing g

• The method we have described is called the modified harmonic mean
method.

• The original idea, called the harmonic mean method, was to use π() as
the weighting function.

• Since k(Y, θ) = p(Y | θi)π(θi), this amounted to simply taking the
sample mean of 1/pi(Y | θi), i.e. of one over the likelihood.

• So long as g integrates to one, the expectation of g/(piπi), under the
posterior density on θi, exists and is finite. We already proved this.
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• But there is no guarantee that its second moment is finite. For example,
if g declines slowly as |θi| goes to infinity, i.e. if g has “fat tails”, while k
does not, then g/k will be unbounded. It will have finite expectation, but
only because the very large values of g/k that will eventually occur will
occur rarely — because we are sampling from the thin-tailed k kernel.

• The rapidly declining k kernel offsets the k in the denominator of g/k.
It is not enough to offset the k2 in the denominator of g2/k2. So if
limθi→∞ g

2/k > 0, g/k has infinite second moment.

• This means usual measures of uncertainty, based on variances, do not
apply, and that convergence of the sample mean to its expected value
will be slow.
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Geweke’s suggested g

• Convergence will be more rapid the closer g/k is to a constant.

• Geweke suggested taking g to be the standard normal approximation to
the posterior density at its peak θ̂i— i.e. to be a

N

(
θ̂i,−

(
∂2 log(k(Y, θi)

∂θi∂θi

)−1)

density, but to truncate it at (θi − θ̂i)′V −1(θi − θ̂) = κ for some κ,
where V is the asymptotic covariance matrix. The integral of the normal
density over this truncated region can be looked up in a chi-squared
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distribution table, so the density can easily be rescaled to integrate to
exactly one over this region.

• The idea is that g should be close to k near the peak, while the truncation
avoids any possibility that g/k becomes unbounded in the tails.
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Remaining problems with g choice

• Geweke’s idea often works well, but not always.

• The tails are not the only place that g/k might become unbounded. If
there is a point θ∗ at which k(θ∗) = 0, and if k is twice-differentiable
at that point, while g is continuous at that point, then g/k has infinite
variance under the posterior density. In high-dimensional models it may
be difficult to know whether there are points with k = 0.

• With, say, 30 parameters, the typical draw of θji will have (θji −
θ̂i)
′V −1(θji − θ̂i)

.
= 30 (because this quanitity has a chi-squared(30)

distribution.) But this means that the density at θi = θ̂i is e30 times
larger than the density at a typical draw.

12



• Of course if the ratio of k at the peak and at a typical draw is also of
this size, this causes no problem, but obviously there is tremendous room
for g/k to vary, and hence for convergence of the estimate of the Bayes
factor to be slow.

• There are ways to do better, if sampling g/k is not working well: bridge
sampling, e.g.

• An important dumb idea: What about just taking sample averages of
p(Y | θji ) from the simulated posterior distribution? (Important because
every year one or more students does this on an exam or course paper.)
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An identity that provides methods

If q1(θ) and q2(θ) are positive, integrable functions on the same domain
(i.e. can be thought of as unnormalized probability densities), with zi =∫
qi(θ)dθ, and if α(θ) is any function such that 0 <

∫
α(θ)qi(θ) < ∞,

i = 1, 2, then ∫ q1(θ)q2(θ)α(θ)

z2
dθ∫ q2(θ)q1(θ)α(θ)

z1
dθ

=
E2[q1α]

E1[q2α]
=
z1
z2
.
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Specific methods

importance sampling
∫
q2 = z2 = 1, α = 1/q2, z1 = E2[q1/q2]. Does not

use MCMC draws. Blows up if q1/q2 is huge for some θ’s.

modified harmonic mean z2 = 1, α = 1/q1, z1 = 1/E1[q2/q1]. Uses only
MCMC draws. Blows up if q1/q2 is huge for some θ’s.

bridge sampling Pick α so both q1α and q2α are bounded, e.g. α =
1/(q1 + q2). Uses draws from both q1 and q2.
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Optimal α

• With same number of draws from q1 and q2, it’s

α =
1

z1q2 + z2q1
.

• Since we don’t know z1/z2, this is not directly a help. But if our initial
guess is off, we can update it and repeat — with new z1/z2, but re-using
the old draws of q2 and q1.
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The Schwarz Criterion

In large samples, under fairly general regularity conditions, the posterior
density is well approximated as proportional to a N(θ̂, V ) density, where V
is minus the inverse of the second derivative matrix for the log posterior
density, evaluated at the MLE θ̂. We know the integral of a Normal density,
so if the approximation is working well, we will find that the integral of the
posterior density is approximately

(2π)k/2 |V |1/2 p(Y | θ̂)π(θ̂) .
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V convergence

In a stationary model, V · T −−−−→
T→∞

V̄ , where V̄ is a constant matrix.

This follows because

log
(
p(Y | θ)π(θ)

)
=

T∑
t=1

log
(
p(Yt | {Ys, s < t} , θ)

)
(1)

∴
1

T

∂2k(Y | θ)
∂θ∂θ′

a.s.−−→ E

[
∂2 log

(
p(Yt | {Ys, s < t} , θ)

)
∂θ∂θ′

]
(2)

and V is just minus the inverse of this second derivative matrix. Of course
above we have invoked ergodicity of the Y process and also assumed that
Yt depends on Yt−s for only finitely many lags s, so that after the first few
observations all the terms in the sum that makes up the log likelihood are
of the same form.
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The Schwarz Criterion, II

Now we observe that since log
∣∣V̄ /T ∣∣ = −n log T + log

∣∣V̄ ∣∣ (where n is
the length of θ), the log of the approximate value for the integrated density
is

n

2
log(2π)− n

2
log T +

1

2
log
{
V̄
}

+ log(k(Y, θ̂)) .

Dominating terms when taking difference across two models:

log
(
k1(Y, θ1)

)
− log

(
k2(Y, θ2)

)
− n1 − n2

2
log(T )
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Comments on the SC

• The formula applies whether the models are “nested” or not.

• Frequentist model comparison, for the special case where one model is
just a restriction of the other, treats the difference of log likelihoods,
times 2, as chi-squared(n1 − n2) and rejects the restricted model if this
statistic exceeds the 1− α per cent level of the chi-squared distribution.

• The Schwarz criterion compares this statistic to a level that increases
not just with n1 − n2, but also with log T .

• In other words, Bayesian model comparison penalizes more richly
parameterized models in large samples, and does so more stringently
(relative to a frequentist likelihood ratio test) the larger the sample.
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The Lindley Paradox

• Take a small collection of reasonable models, calculate Bayesian posterior
odds. A typical result: One model has probability 1 − ε, the others
probability less than ε, with ε very small (say .00001).

• Frequentist comparisons (for the nested case where they work) seem not
to give such drastic answers.

• One interpretation — Bayesian methods are more powerful.

• Another — Bayesian methods produce unreasonably sharp conclusions.
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Interpreting and accounting for the Lindley Paradox

• The reason it’s a problem is that these sharp results are often unstable:
If, say, we introduce one more model, we may find that the new one is
the one with 1 − ε probability, which makes our previous near certainty
look foolish.

• In other words, the problem is that the result is conditional on our being
certain that the set of models compared contains the truth, that there
are no other possibilities waiting in the wings.

• Gelman, Carlin, Stern and Rubin suggest (almost) never doing model
comparison: Their view is that it should (almost) always be reasonable,
when comparing models, to make each model a special case of a larger
model with a continuously varying parameter.
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• In other words, when you think you want to use a {0, 1}-valued “model
number” parameter, figure out how to replace this with a continuously
varying parameter, say γ, such that the two models arise as γ = 1 and
γ = 0.
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