
ECO 518b Spring 2018

FINAL EXAM

Answer all questions. You can take up to three hours to complete the exam.

(1) Consider the model

yt = a + bxt + cxtεt t = 1, . . . , T , (1)

where a, b and c are unknown parameters, the data are i.i.d. over t, and εt | xt ∼
N(0, 1).
(a) Display the likelihood function for this model and sample.

The data are i.i.d., and εt is independent of xt, so yt | xt is distributed as N(a +
bxt, c2x2

t ). This makes the likelihood

(2π)−T/2c−T
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c2xt

)
.

Quite a few people missed the c−T term in the likelihood, and this made it impossible
to derive the inverse-gamma form for the marginal distribution of c2.

(b) Explain how to make draws from the posterior joint distribution for a, b, and c.
It may be useful for you to know that if w is inverse-gamma distributed with
parameters n (for shape) and α (for scale), it has pdf

w−n−1αn exp(−α/w) dw (2)

and expectation α/(n − 1). You can assume the availability of functions that
generate draws from normal and of inverse-gamma pdf’s.
The marginal posterior density of c2 under a flat prior is found by integrating out a and
b. For this it was helpful to realize that this is just a standard GLS model with known
form for the dependence of the residual variance on x, so the MLE is weighted least
squares. That is, if we write ỹt = yt/xt, x̃t = 1/xt, then the model is

ỹt = b + cx̃t + ηt ,

where ηt ∼ N(0, c2) , which is exactly the standard normal linear model. So following
the standard derivation for that model (or just quoting the result), integrating out a and
b gives us the marginal posterior density for c2 proportional to

c−T+2 exp
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− 1

2c2
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∑
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û2
t

)
,

where ût is the residual from the least-squares fit of ỹt to x̃t and a constant. This has
the form of an IG((T − 2)/2, 1

2 ∑ û2
t ) distribution. If the prior were flat on log c (i.e.

dc/c) rather than on c2, the degrees of freedom would be (T − 1)/2. Best answers
showed all this. Next best noticed equivalence to the SNLM after weighting, quoted
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2 FINAL EXAM

the standard results for that model. Next best just said c2 distributed as IG, without
showing degrees of freedom or scale factor. A final variant noted that the conditional
density for c given a, b is IG, though with a different degrees of freedom and scale
factor.
Because we have an exact standard marginal distribution for c2 and an exact (normal)
conditional distribution for a, b given c2, we can draw c2 from its marginal, then a and
b from their conditional. Each time we do this we get an independent draw from the
posterior, so no MCMC is necessary, not even Gibbs sampling.

(c) Suggest a way to construct a consistent estimate of the (frequentist) covariance
matrix of the maximum likelihood estimates of a and b for this model.
As we’ve already noted, the MLE is the GLS estimator with the MLE for c2 plugged
in for its true value. c2, the residual variance of the weighted regression, and has the
usual SNLM normal distribution. c2 can be estimated as the sample variance of the
residuals. There is one important qualification here, though, that no one noticed on
the actual exam. If xt has a non-zero, continuous density at xt = 0 (as it would if it
were normally distributed, for example), then 1/xt has infinite variance. This makes
the usual argument for asymptotic normality of GLS break down, so there may be
no asymptotic covariance matrix. This despite the fact that the Bayesian posterior
remains nicely behaved without the need for a finite variance assumption on 1/xt.

(d) Would estimation of a and b by an OLS regression of y on x and a constant be
consistent? How could you construct a (frequentist) covariance matrix for such
estimates?
OLS is consistent. The residual in the unweighted regression is cxtεt, and because
you were given that E[εt | xt] = 0,

E[cεtxt] = E[cxtE[εt | xt]] = 0 .

Since the data are i.i.d., the only additional assumption needed is that xt is not con-
stant. Even if 1/xt has infinite variance, which it will if its density is continuous and
positive at xt = 0, OLS will be consistent. The usual formula for the covariance
matrix of OLS with Var(ε) = Ω 6= σ2 I applies:

(E[X′X])−1E[X′ηη′X]E[(X′X)−1] .

The middle term in this expression can be estimated by the usual “robust” formula,
though here, since we know the form of dependence of the variance of η on x, we
can do better by estimating the middle term as

∑ ĉ2x4
t .

Of course this requires an additional assumption, that E[x4
t ] is finite; otherwise as-

ymptotic normality may not apply.
(e) Suppose now that the last term on the right-hand side of (1) is, instead of cxtεt,

c |xt|θ εt. Sampling from the posterior over a, b, c and θ requires MCMC iteration.
Explain how you could use your results from part 1b to put the iterations into
“Metropolis within Gibbs” form.
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We break the parameters into two groups: (a, b, c) and θ. Conditional on θ the model
is just as before, except with weighted least squares using x−θ

t rather than x−1
t as

weights. So we can draw directly from the posterior on (a, b, c) | θ by the methods
described in the answer to 1b. This is a standard Gibbs step. Then conditional on the
draw of (a, b, c), draw θ with a Metropolis step, because θ’s conditional posterior is not
standard. Alternating these two types of step should give a valid MCMC algorithm.

(2) Alice wishes to estimate a regression of income, for a sample of many thousands of
individuals, on a constant, the individual’s age, average GDP in the person’s state of
residence, and average unemployment in the person’s state of residence.
(a) She realizes that because of the nature of her variables, she cannot use a fixed-

effects regression with state fixed effects. Why?
All the individuals in a state will have the same state GDP and state unemployment
rate value, so within-state regressions will not be able to separate state fixed effects
from these other two variables that are perfectly collinear with it.

(b) She also knows that a standard random effects model should allow her to es-
timate her model. However, she knows that a random effects regression esti-
mate can supposedly be characterized as a weighted average of a “between” and
“within” regression, where the “within” regression is the fixed effects estimator.
Since in her case the fixed effects estimator provides no estimates of coefficients
on some of the variables in her regression, she wonders how to take advantage
of this weighted average characterization in her case. Is there a way to do it?
Explain how to do it, or why the weighted average characterization breaks down
in this case.
The “between-within” formula expresses the fixed-effects estimator as

(α1X̃′X̃ + α2X̄′X̄)−1(α1X̃′X̃β̃ + α2X̄′X̄β̄) ,

where ˜ indicates “within” and ¯ indicates “between”. So the ˜ variables are deviations
from state means and and the ¯variables are state means. Even if there are no vari-
ables constant within states, like GDP and unemployment here, the X̃′X̃ matrix has
zeros in rows and columns corresponding to the constant term and thus is singular.
But the between-within formula does not require inverting this matrix. The compo-
nents of β̃ corresponding to variables constant within states are indeterminate, but
they are all multiplied by zeros so they do not affect the weighted average.
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(3) Consider the model y1t
y2t
y3t

 = yt = c + Ayt−1 + εt , (3)

where εt ∼ N(0, Σ) and is independent of all ys values with s < t. The parameters of
the model take the numerical values

c =

 1
0
−1

 , A =

 0.53 0.07 0.50
−0.12 0.87 0.05
0.23 0.07 0.80

 (4)

The Jordan decomposition of A is given by 0.33 −0.33 −0.67
−0.17 0.67 −0.17
0.33 −0.33 0.33

1 0 0
0 .9 0
0 0 .3

 1.00 2.00 3.00
0.00 2.00 1.00
−1.00 0.00 1.00

 . (5)

(a) Which, if any, of the individual elements of the yt vector are stationary?
None are stationary. Jordan decomposition A = PΛP−1 lets us rewrite the system
in terms of z = P−1y, where it is clear that the first component of z is non-stationary
and the second two are stationary. Since the first column of P is non-zero in all its
elements and y = Pz, each element of y loads on the non-stationary z1 and is thus
itself non-stationary.

(b) Show that the system exhibits cointegration and display the cointegrating vec-
tors (i.e. the linear combinations of y that are stationary).
Since the system has three variables but just one unit eigenvalue, it displays co-
integration. The cointegrating vectors are the second two rows of P−1, i.e. (0, 2, 1)
and (−1, 0, 1). (Any linear combination of these two is also a cointegrating vector.)
Some people didn’t see this and instead went directly to finding eigenvalues and
eigenvectors of the given A or of A − I, not recognizing that the eigenvalues and
eigenvectors were already given by the Jordan decomposition. With only two signif-
icant figures of accuracy in the given A and P, this led to some messy calculations.

(c) What are the unconditional means of the stationary components of y that you
have identified?

z2t = [0, 2, 1][1, 0,−1]′ + .9z2,t−1 + η2t = −1 + .9z2,t−1 + η2t

z3t = [−1, 0, 1][1, 0,−1]′ + .3z3,t−1 + η3t = −2 + .3z3,t−1 + η3t .

From these equations, substituting in z̄ for every occurrence of z, we get E[z2t] =
−10, E[z3t = −2/.7].

(d) How could you calculate the unconditional covariance matrix of the stationary
components of the model?
The covariance matrix of ηt, the residual vector in the transformed system, is P−1Σ(P′)−1,
where Σ is the covariance matrix of εt. Knowing that, we can use the usual formula
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for the variance of a first-order scalar AR to get

Var(z2t) =
Var(η2t)
1− .81

, Var(z3t) =
Var(η3t)

1− .09
.

You were asked for the whole covariance matrix, which requires calculating Cov(z2t, z3t).
One way to do this, which we did not cover in class, is to calculate

Cov(η2t, η3t)

1− .9 · .3 .

That this works could have been derived from the general matrix solution, which
we did discuss in class and most people who answered correctly used. It uses the
equation (where wt = (z2t, z3t))

Rw(0) =
∞

∑
s=0

ΛsP−1Σ(P′)−1Λs ,

(e) Write the system in VECM form. (Note that in this pure first-order case, the
VECM form has no first-differenced terms on the right-hand side.)
Full credit for just observing that the system can be written

∆yt = c + (A− I)yt−1 + εt ,

and that this is the VECM form. A− I is singular and has the form αβ, where

β =

[
0 2 1
−1 0 1

]
.

Figuring out numerically what α is was not required, though many tried and some
succeeded. The easiest way, which most people did not see, is to observe that

A− I = PΛP−1 − PIP−1 = P

0 0 0
0 .9 0
0 0 .3

 P−1 .

If we use Q to denote the last two columns of P, β for the last two rows of P−1, and
M to denote the lower 2 by 2 diagonal of Λ, the expression above is equivalent to

A− I = QMβ ,

So we can set α = QM. Numerically, using the given Jordan decomposition, this is

α =

−0.30 −0.20
0.60 −0.05
−0.30 0.10

 ,

give or take some rounding error. Of course if you arrived at some other linear com-
bination of the second and third right eigenvectors as your cointegrating vectors, you
would have arrived at a different α.


