ECO 518 Spring 2018

Grouped data, lagged variables

Christopher A. Sims
Princeton University
sims@princeton.edu

May 9, 2018

(©2018 by Christopher A. Sims. (©)2018. This document is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License.
http://creativecommons.org/licenses/by-nc-sa/3.0/



The simplest case

Yit = PYit—1 T Vi +Ejt .

Assume e;; ~ N(0,0?), uncorrelated with {y;,,s < t}, i.e. that g; is the
Innovation in ;;.

e Looks like what we've already discussed, just with lagged vy playing the
role of X;;.

® y;,+—1 Is predetermined, not exogenous. If 1" is large, we know that
OLS within groups is consistent and asymptotically has the usual limiting
covariance matrix.



e If T is small while M (number of groups) is large, “fixed effects”
estimators of coefficients on an exogenous X are consistent and have the
usual distribution theory, despite the estimators of v; remaining noisy as
M — oo.

e But with X not strictly exogenous, and in particular with lagged vy as
explanatory variable, “fixed effects” estimation is no longer consistent as
M — oo with T fixed.



Why is “fixed effects” inconsistent?

o Fixed effects is just the within regression. That is, it amounts to
estimating the model using deviations from group means for all variables:

yie — Ui = (Xit — X;)B + €58 — &

e With strictly exogenous X, X;; is uncorrelated with €;5 at any lead or lag,
so in this within regression, the right-hand-side variable is uncorrelated
with the residual.

e When X;; = y;+—1, though, the model implies that ¢;5 for s < t are
correlated with w;;, so the residual in the transformed regression is
correlated with the right-hand-side variable.



How to proceed: likelihood-based approach

e The model provides only conditional densities for y;; | ¥i¢—s,5 > 0,

t = 2,...,7. Our data also includes M observations on y;;. A
likelihood function requires a model for y;1,2 =1,..., M.
e The short-cut used in single time series — conditioning on the initial

observation — doesn’'t work here, because here the density for the initial
observation does not become dominated by the rest of the likelihood as
sample size increases.



One possibility: assume stationarity

Then
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e We still need a distribution for v;. Assuming a flat prior on v; doesn't
work, because that implies high variance across groups for the group
means of y;;, and the data may not be consistent with that.

e What does work is to assume v; are drawn from, say, N(u,,02). The
data can then, through the likelihood, inform us about p, and 05.



Stationarity often unattractive in panel data

e For example, 7 might index individuals, and ¢ might index “Months
unemployed between ages 16-20, 21-25, 26-30, etc.

e In this case we can assume

IRR(FES

e This introduces six new parameters to the model. The stationarity
assumption is a special case that introduces only two new parameters
(the mean and variance of the v; distribution).



A pitfall

If this approach is applied to a collection of time series — for example
the time path of log GDP for some set of countries — it is important
that the data not be “preprocessed” in certain ways.

Obviously if means have been removed, it makes no sense to treat p,, as
a free parameter.

But a less obvious mistake is to use data in “index” form, where to make
the data more easily comparable in a graph, they have been normalized
to make all the country values the same at some date.

Then, eg., if p = 1, v; = 0, the original model implies that the
conditional expectation of y;; given ;1 is y;1, whereas if ¢ is the index
normalization date, this will clearly not be true.



Another approach: IV

o Fixed effects gets rid of the 1, term by taking deviations from group
means. Can also do this by first-differencing the data:

Yit — Yit—1 = DAY = pAY; 11 + Agyy

e Of course OLS on this equation would not work. (Why?)

e What might be an instrument?



Using lagged y’s as instruments

® ;2 or Ay; o are uncorrelated with Ae;¢, passing the first test of an
Instrument.

e But are they correlatehd with the “included endogenous” variable?

e |f the model is correct and p =1,

t—1

Yit = Z Eit—s T Yi0 -
s=0

Thus Ay; +—1 is uncorrelated with all values of ys and Ay, for s <t —1.
In this case lagged values of y and Ay are useless as instruments. Even
if p is just close to one, the part of Ay;_1 that can be explained with
lagged values of y and Ay will be small, so the instruments will be weak.



Recap of dynamic panel regression

With constants c¢; varying across groups, short time series, model

Yit = Ci T+ Yit—1P + Eit

we can write the likelihood for all the observables {y;q,-..,vyir} as
N ik
1] ales io H p(yit | ¢is Yit—1) -
1=1 t=1

We use the assumption that data are independent across ¢ and that

dependence of y;; on the past is entirely through y; +—;.
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Recap of dynamic panel regression

N T

HQ(C’iayiO) Hp(yit | Ciayi,t—l) -

i=1 t=1
We use the assumption that data are independent across ¢ and that
dependence of y;; on the past is entirely through ¥;;:—;. And the usual
assumption is

p(yi,t
o

L (it — pYit—1
CiyYit—1) = gqb ( ! i :
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Why an exogenous variable makes things more
complicated

e With no x4, we can use the model for the conditional distributions, so the
only complication is specifying the marginal joint distribution of ¢;, y;o.

e This approach would also work for x's indexed only by 7, though of
course their effects are not identified if we also allow unconstrained
group constants ¢; and do not assume them uncorrelated with the z;’s.
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Why an exogenous variable makes things more
complicated

e But for z's indexed 7, ¢, the model provides only a distribution for
Yit ‘ Ci, {yi,t—s—la Lijt—syS = 07 ceey OO} .

e Even if z;; is strictly exogenous (uncorrelated with €;; at all leads and
lags), to follow the strategy we used without x's would require forming
a joint distribution for w9, ¢;, {xis,s =1,...,T}.

e Giving this an arbitrary (but probably joint normal) density ¢ to form the
likelihood conditional on x;1,...,x;7 could work well only if T and the
dimension of z;; are small relative to the number of groups.
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Modeling the z’s

e Any approach to estimating the model with z's involves making
assumptions on their distribution and their oint distribution with ¢;
and Yio-

e A straightforward approach is to extend the dynamic model to include
Lit-

e New model:
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A panel VAR

We can give the system a form that looks like the original single equation
model by using the notation

Yit
Zit = [ N Zit = Ci T PZit—1 T Eit -

Now the strategies we discussed for the single-equation model with no
exognous variables can be applied here — using the stationary unconditional
distribution for z;3, postulating an unconstrained joint normal distribution
for ¢; and z;9, etc., though of course if z is very long, implementing these
strategies may be computationally demanding.
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