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Outline

I. The difference between Bayesian and non-Bayesian inference.

II. Confidence sets and confidence intervals. Why?

III. Bayesian interpretation of frequentist data analysis.

IV. Why econometricians resist taking a Bayesian approach.
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The bare bones of Bayesian inference

• One has a probability model of the observed data Y that depends on
unknown parameters θ: p(Y | θ).

• Both Y and θ are random when unknown. But Y will be observed, after
which it is no longer unknown and hence no longer “random”.

• We have a distribution for θ representing our uncertainty about it before
we see Y. It has pdf π(θ).

• They joint distribution is π(θ)p(Y | θ), so the conditional density of θ | Y
is

p(Y | θ)π(θ)∫
p(Y | θ)π(θ) dθ
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Bayesian Inference is a Way of Thinking, Not a Basket of
“Methods”

• Frequentist inference makes only pre-sample probability assertions.

– A 95% confidence interval contains the true parameter value with
probability .95 only before one has seen the data. After the data has
been seen, the probability is zero or one.

– Yet confidence intervals are universally interpreted in practice as
guides to post-sample uncertainty.

– They often are reasonable guides, but only because they often are
close to posterior probability intervals that would emerge from a
Bayesian analysis.
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• People want guides to uncertainty as an aid to decision-making. They
want to characterize uncertainty about parameter values, given the
sample that has actually been observed. That it aims to help with this is
the distinguishing characteristic of Bayesian inference.
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The complete class theorem

• See Ferguson (1967)

• Under fairly general conditions, every admissible decision procedure is
Bayes.
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Is the difference that Bayesian methods are subjective?

• No.

• The objective aspect of Bayesian inference is the set of rules for
transforming an initial distribution into an updated distribution conditional
on observations.

• Bayesian thinking makes it clear that for decision-making, pre-sample
beliefs are therefore in general important.

• But most of what econometricians do is not decision-making. It is
reporting of data-analysis for an audience that is likely to have diverse
initial beliefs.
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• In such a situation, as was pointed out long ago by Hildreth (1963) and
Savage (1977, p.14-15), the task is to present useful information about
the shape of the likelihood.
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Flat priors, “ignorance”

• Flat priors amount to treating the likelihood, normalized to integrate to
one, as the posterior.

• They do not represent ignorance, or lack of prejudice.

• They do not in general make Bayesian probability statements look like
frequentist confidence statements.

• Example: Flat prior on θ as the limit as σ→ ∞ of a N(0, σ2) prior.
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Flat priors, “ignorance”

• Flat priors amount to treating the likelihood, normalized to integrate to
one, as the posterior.

• They do not represent ignorance, or lack of prejudice.

• They do not in general make Bayesian probability statements look like
frequentist confidence statements.

• Example: Flat prior on θ as the limit as σ→ ∞ of a N(0, σ2) prior.

• Implies probability on large |θ| values increasing, therefore prior on

1/θ
D−→ 0
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Flat priors as an approximation

• Sometimes, the likelihood dominates the prior.

• That is, likelihood p(Y | θ) is very small outside a set S such that the
prior π(θ) is nearly constant on S.

• Then a flat prior and π() will deliver nearly the same posterior.

• In regular cases, the likelihood does concentrate in smaller and smaller
regions as sample size increases, so with any prior expressible as a
density function, in large enough samples a flat prior becomes a good
approximation.
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How to characterize the likelihood

• Present its maximum.

• Present a local approximation to it based on a second-order Taylor
expansion of its log. (Standard MLE asymptotics.)

• Plot it, if the dimension is low.

• If the dimension is high, present slices of it, marginalizations of it, and
implied expected values of functions of the parameter. The functions you
choose might be chosen in the light of possible decision applications.
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• The marginalization is often more useful if a simple, transparent prior
is used to downweight regions of the parameter space that are widely
agreed to be uninteresting.
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Confidence set simple example number 1

• X ∼ U(β + 1, β− 1)

• β known to lie in (0,2)

• 95% confidence interval for β is (X− .95, X + .95)

• Can truncate to (0,2) interval or not — it’s still a 95% interval.
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Example 1, cont.

• Bayesian with U(0, 2) prior has 95% posterior probability (“credibility”)
interval that is generally a subset of the intersection of the X± 1 interval
with (0,2), with the subset 95% of the width of the interval.

• Frequentist intervals are simply the intersection of X ± .95 with (0,2).
They are wider than Bayesian intervals for X in (0, 2), but narrower for X
values outside that range, and in fact simply vanish for X values outside
(−.95, 2.95).
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Are narrow confidence intervals good or bad?

• A 95% confidence interval is always a collection of all points that fail to
be rejected in a 5% significance level test.

• A completely empty confidence interval, as in example 1 above, is
therefore sometimes interpreted as implying “rejection of the model”.

• As in example 1, an empty interval is approached as a continuous limit
by very narrow intervals, yet very narrow intervals are usually interpreted
as implying very precise inference.
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Bettable confidence sets

• Müller and Norets (2016)

• Suppose we allow someone to look at the (1− α) confidence interval,
then make a decision as to whether to make a bet at (1− α)/α odds that
parameter is not in the interval.
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Bettable confidence sets

• Müller and Norets (2016)

• Suppose we allow someone to look at the (1− α) confidence interval,
then make a decision as to whether to make a bet at (1− α)/α odds that
parameter is not in the interval.

• If this bettor can make money on average, maybe we don’t like the CI.

• If the confidence set is non-bettable and “similar” (coverage 1− α for all
true parameter values) it is a credibility set under some prior.

• Every non-bettable confidence set contains a 1 − α credibility set for
some prior.
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While CS’s usually do, CI’s often don’t, exist

• To create a CS, find a test of H0 : θ = θ0 at the α level for each θ0 ∈ Θ.
The CS is {θ0 | θ = θ0} not rejected.

• It’s intuitively appealing to integrate the likelihood/posterior to obtain a
“marginal” distribution for the parameter for which a CI is desired. This
is completely correct for a Bayesian analysis. It also happens to work
for pure location-shift problems with symmetry in the likelihood (like
normal models, or asymptotically regular models). But generally, these
integrated likelihoods do not allow derivation of CI’s.

• The coverage probability for a random interval for a parameter generally
depends on the values of other parameters.
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Bayesian interpretation of frequentist asymptotics

• A common case:
√

T(β̂T − β) | θ
D−−−→

T→∞
N(0, Σ)

• Under mild regularity conditions, this implies
√

T(β − β̂T) | β̂T
D−−−→

T→∞
N(0, Σ)

• Kwan (1998) presents this standard case (though its main theorem
contains an error). Kim (2002) extended the results beyond the

√
T

normalization case and thereby covered time series regression with unit
roots.
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Breaks

• Suppose we have a model specifying Yt is i.i.d. with a pdf f (yt; µt), and
with µt taking on just two values, µt = µ for t < t∗, µt = µ̄ for t ≥ t∗.

• The pdf of the full sample {Y1, . . . , YT} therefore depends on the three
parameters, µ, µ̄, t∗.

• If f has a form that is easily integrated over µt and we choose a prior
π(µ, µ̄) that is conjugate to f (meaning it has the same form as the
likelihood), then the posterior marginal pdf for t∗ under a flat prior on t∗

is easy to calculate: for each possible value of t∗, integrate the posterior
over µ, µ̄.
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• The plot of this integrated likelihood as a function of t∗ gives an easily
interpreted characterization of uncertainty about the break date.

• Frequentist inference about the break date has to be based on
asymptotic theory, and has no interpretation for any observed
complications (like multiple local peaks, or narrow peaks) in the global
shape of the likelihood.
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Resistance

1. It’s subjective.

2. It requires strong assumptions about small sample distributions.

3. Frequentists can come up with intuitively appealing and easily computed
estimates, examine their properties. Bayesians always find optimal
estimates, which may be hard to understand and compute.

4. The workhorse framework of econometrics, GMM, has no Bayesian
interpretation.
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