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The lag operator

• Given any function of time f(t), Lf is another function of time with
Lf(t) = f(t − 1), or if we use subscripts to indicate dependence on t,
Lyt = yt−1.

• We can take powers of L, so L2yt = yt−2, for example.

• We can form polynomials in L, so (a+bL+cL2)yt = ayt+byt−1+cyt−2,
for example.

• We can take negative powers of L, so L−2yt = yt+2 for example.

• What would we mean by (1− bL)−1?
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Polynomial long division with lag operators

(blackboard)

1

1− bL
= 1 + bL+ b2L2 + b3L3 + . . .

Also

1

1− bL
=
−b−1L−1

1− b−1L
= −b−1L−1 − b−2L−2 − b−3L−3 − . . .

If |b| 6= 1, just one of these is convergent. If |b| = 1, neither is convergent.
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The innovation in a finite-variance stochastic process

The innovation at time t in the stochastic process y is

yt −
(
minimum variance linear predictor of yt based on {ys, s < t}

)
.

In other words, the forecast error when using the best linear predictor.

Note that in some cases the best linear predictor involves infinitely many
lagged values of y, and may even be something that can’t be represented
as
∑∞

s=1 asyt−s for any fixed as sequence, but instead only as a limit of a
sequence of such a(L)y expressions. (As we’ll see below.)
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Covariance-stationary processes and their ACF’s

• A covariance stationary process yt is one such that Cov(yt, yt−s) =
Ry(s) exists for every s and does not depend on t. Also E[yt] does not
depend on t.

• The function Ry(s), which is an m×m matrix if yt is a vector of length
m, is called the autocovariance function, or ACF.

• A Gaussian process yt is one such that for any finite collection of dates
{t1, . . . tk}, the joint distribution of

{
yt1, . . . , ytk

}
is Normal.

• The distribution of a stationary Gaussian process is fully characterized
by its mean and its ACF.
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The finite MA class of models

yt =

k∑
s=0

asεt−s = a(L)εt .

y may be m × 1, in which case as is m × m. ε ∼ N(0,Σ), i.i.d. Or
sometimes just mean 0, variance Σ, not serially correlated.

• Note that we have not said that εt is the innovation in yt, only that it is
serially uncorrelated.

• The same stochastic process can generally be represented as a linear
combination of uncorrelated εt’s in many different ways.

• The representation that makes εt the innovation is called the
fundamental MA representation.
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Example of fundamental and non-fundamental MA’s

• A: yt = εt + .5εt−1, B: yt = ηt + 2ηt−1, Var(εt) = 4 Var(ηt)

• If Var(εt) = 4, Ry(0) = 5, Ry(1) = 2, Ry(s) = 0 for |s| > 1. Both MA
representations give the same Ry.

• Which is fundamental? I.e., which is the innovation, εt or ηt? Or, which
is the best linear predictor, .5εt−1 or 2ηt−1?
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Properties of finite order MA processes.

• Dense in the space of linearly regular stationary processes. These are
processes such that the best linear forecast converges to the mean of the
process as the forecast horizon grows to infinity.

• Closed under taking linear combinations.

• Closed under taking subvectors.

• For forecasting, we need the fundamental MA.
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ACF and MA related via polynomial multiplication

• It is not hard to verify that, if yt = a(L)εt with εt i.i.d. N(0,Σ), Ry(s)
is the coefficient on Ls in

a(L) Σ a′(L) ,

where we define a′(L) =
∑

s a
′
sL
−s, i.e. the ′ operator on a(L) both

transposes matrix coefficients and changes the sign on the exponents of
L.

• We often abuse notation by writing Ry(L) = a(L) Σ a′(L).
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Roots and fundamentalness: first-order scalar case

Suppose yt = (1 + bL)εt. Multiply both sides by (1 + bL)−1:

εt = (1 + bL)−1yt = yt − byt−1 + b2yt−2 − b3yt−3 + . . . .

• Does this expression make any sense? If |b| < 1, it does, because then
the coefficients in the infinite sum converge.

• If yt has bounded variance for all t, the partial sums
∑T

0 (−b)syt−s
converge to a well-defined limit. (Technically, they form a Cauchy
sequence when we use the norm ‖X‖ =

√
Var(X).)

• In that case we have expressed εt as a linear combination of current and
past y’s.
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• Then εt is the innovation: it is uncorrelated with past ε and therefore
also uncorrelated with past y values. Thus there is no way to predict it
with linear combinations of past y’s.

• And of course if |b| > 1, this argument doesn’t work because the partial
sums don’t converge to anything.

• The ACF here is Ry(L) = σ2
ε(1 + bL)(1 + b−1L). There are just two

MA representations, one with |b| < 1 and the the root b−1 of 1 − bz
therefore larger than one in absolute value, the other with root b smaller
than one in absolute value.
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What if |b| = 1?
Suppose b = 1. In that case (1+L)−1 = 1−L+L2−L3+ . . . does not

converge, so it might seem that εt is not the innovation. However it turns
out that there are sequences of linear combinations of current and past y’s
that do converge to εt If we set an(L) as

ans = (−(1− 1/n))s), s ∈ {0, . . . , n} , 0 otherwise ,

an(L)yt = εt +
1

n

n∑
s=1

(−1)sεt−s

Var
(
(εt − an(L)yt

)
=
σ2
ε

n
−−−−→
n→∞

0

A similar argument works for b = −1.
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Roots and fundamentalness

• The z-transform of a(L) is a(z) =
∑

s asz
s. I.e., we replace the lag

operator L in the polynomial with a complex number z and consider the
function on the complex plane that this defines.

• Note that the roots of the polynomial |a(z)| are just the inverses of the
roots of |a′(z)| =

∣∣a(z−1)
∣∣.

• In the first-order scalar case we verified that the fundamental MA
representation is the only one satisfying |a(z)| = 0 only at values of z on
or outside the unit circle (i.e. greater than or equal to one in absolute
value). (Though for the scalar, one-lag case complex roots can’t occur.)
It turns out this rule applies also to models with more lags and with y a
vector (so that |a(z)| is the determinant of a matrix).
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Inference for finite order MA’s

• AR models, which we consider next, are more commonly used in applied
work and easier to estimate.

• One approach to estimating an MA. Form the likelihood p(y1, . . . , yT |
a, σ2

ε) and maximize it or sample from it as a flat-prior posterior.

13



Likelihood for a finite order MA

YT =


y1
y2
...
yT

 ∼ N(1⊗ µy,Σ)

Σ =


Ry(0) Ry(1) Ry(2) . . . Ry(T − 1)
Ry(−1) Ry(0) Ry(1) . . . Ry(T − 2)
Ry(−2) Ry(−1) Ry(0 . . . Ry(T − 3))

... . . . . . . . . . ...
Ry(1− T ) . . . Ry(−2) Ry(−1) Ry(0)


Ry(t) can be computed from a and σ2

ε for any t. 1 is a column or vector
of 1’s and µy is the constant mean of yt. Note that Ry(−t) = (Ry(−t))′.
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Likelihood for a finite order MA

The expression for the Normal pdf for YT , treated as a function of
µy, a, σ

2
ε, is then the likelihood, and its log is

−1
2 log(|Σ|)− 1

2
(YT − µy)′Σ−1(YT − µy) .

Whether using the likelihood to find a MLE or to do MCMC, you would
want to restrict the parameters to lie in the region of the parameter space
that makes the MA representation fundamental.

You should be sure you can code a likelihood function for, e.g., the case
YT = (1, 0,−1)′, a(L) = 1 + bL µy = 0 as a function of b and σ2

ε.
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Detecting non-fundamental MAR’s

• If yt = A(L)εt and yt = B(L)ηt, with both εt and ηt i.i.d. N(0, I),
then since there is only one Ry(t), we must have Ry(L) = A(L)A′(L) =
B(L)B′(L).

• If A(L) is finite order, B(L) is finite-order of the same order.

• The roots of A′(L) are the inverses of the roots of A(L), and same for
B(L), B′(L).

• Therefore the roots of A(L) are either roots of B(L) or inverses of roots
of B(L).
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Flipping roots

Since in the univariate case the roots of a polynomial fully characterize
it (up to a scale factor), we can in that case convert a finite-order non-
fundamental moving average operator A(L) to its fundamental counterpart
by “flipping” all its roots that lie inside the unit circle, replacing them with
their inverses. We then generally need to rescale to get variances right.
E.g.:

yt = εt + 2εt−1 + .75εt−2 = (1 + 2L+ .75L2)εt = (1 + 1.5L)(1 + .5L)εt .

yt = (1 + 2
3L)(1 + .5L)ηt = (1 + 1.16667L+ .3333L2)ηt .

The rescaling comes in because to make Ry the same for these two
representations, we need Var(ηt) = 2.25 Var(εt). If we normalize instead
by making Var(εt) = Var(ηt) = 1, then the coefficients in the fundamental
polynomial have to be multiplied by 1.5.
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Multivariate flipping

(much harder)

18



Some qualitative rules

• If A(L) is fundamental and B(L) is not, and if they are normalized
so disturbance variance is the identity, then A0A

′
0 − B0B

′
0 is positive

semi-definite.

• Therefore if A0A
′
0 � B0B

′
0, B is not fundamental. If neither A0A

′
0 �

B0B
′
0 nor B0B

′
0 � A0A

′
0, neither is fundamental. Here X � Y means

“X − Y is positive semi-definite”.
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The finite order AR class of models

yt =

k∑
s=1

bsyt−s + εt, or b(L)yt = εt .

ε ∼ N(0,Σ), or sometimes just mean 0, variance Σ, not correlated with
past y’s, and therefore not serially correlated.

Properties:

• Dense in the space of LR stationary processes, plus includes some types
of non-stationary processes

• Not closed under taking linear combinations
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• Not closed under taking subvectors.

• No uniqueness problem. Every set of real numbers used to populate bs,
s = 1, . . . , k results in a distinct model. Restrictions like that to obtain
fundamental MA’s are needed if we want to consider only stationary
models. But this restriction is not needed to prevent redundancy.
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Finite-order ARMA models

B(L)yt = A(L)εt , B(0) = A(0) = I ,

where εt ⊥ {ys, s < t} (and εt is therefore the innovation in y at t) and
B and A are finite-order polynomials in L, perhaps with matrix-valued
coefficients.

Properties:

• Contains MA and AR models, so is also dense in the LR class of models.

• Closed under taking linear combinations.

• Like the finite-order AR class, contains non-stationary as well as stationary
models.
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• Has the same problems as the MA class with possible redundancy in the
A(L) parameter space.

• Has the same problem as the AR class with the restrictions on B(L)
needed if we want to restrict to stationary models.

• Has its own special, severe problem of non-uniqueness, because of
possible cancellation between AR and MA roots.
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AR and MA representations

• When B is a finite-order polynomial and there is no root z of |B(z)| = 0
with |z| = 1, and when εt are i.i.d. with finite variance,

yt = B−1(L)εt ⇒ B(L)yt = εt

yt = B(L)εt ⇒ B−1(L)yt = εt

Here we are allowing both B and B−1 to have non-zero coefficients on
negative, as well as positive, powers of L, and insisting that both be
convergent. This implies there is a unique inverse for B(L) under our
assumption of no roots on the unit circle.

• In fact these relations are more general. B(z) can be defined even for
infinite-order z, so long as the coefficients go to zero sufficiently fast,
and therefore the finite-order requirement can be dropped.
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AR and MA representations, cont.

When B is a finite-order polynomial in non-negative powers of L and
yt has finite variance, εt are of finite variance, and εt is uncorrelated with
yt−s, all s > 0,

B(L)yt = εt ⇒ yt = B−1(L)εt ,

where B−1(L) is the inverse of B in non-negative powers of L, which might
not converge. (Its coefficients converge if all the roots of |B(z)| = 0 are
outside the unit circle.)

Obviously y can be stationary, with the εt process stationary, only if
B−1(L) does converge. If not, the variances of the εt’s must shrink as we
go back in the past. Most commonly, in non-stationary models we think of
εt as zero for all t less than some initial date t0, and εt i.i.d. for t > t0.
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Stacking an AR model into first-order form

yt = B(L)yt + εt , εt the innovation in yt

yt =

k∑
s=1

Bsyt−s + εt
yt
yt−1

...
yt−k+1

 =

[
B1 B2 . . . Bk−1 Bk

I
n(k−1)×n(k−1)

0

]yt−1...
yt−k

+

εt0...
0


Yt = BLYt + νt , (I −BL)Yt = νt

The eigenvalues of the nk × nk B matrix are the inverses of the roots of
|I −B(z)|.
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E[y] and Ry(0) for a stationary AR

• Whereas for an MA model computing the full Ry function is
straightforward polynomial matrix multiplication, finding Ry is more
work for an AR model.

• In the first-order case, once we know Ry(0), we can find Ry(s) =
BsRy(0) for all s. But for Ry(0) we need to solve

Ry(0) = BRy(0)B′ + Σε ,

which is a system of linear equations in the elements of Ry(0).
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E[y] and Ry(0) for a stationary AR

• It’s a big system, and there’s a literature on ways to solve it speedily. One
name for it is “Lyapunov equation”. (An earlier version of these notes
said it ould also be called a “Ricatti equation”, but that is a different
kind of equation.)

• For small models,

(I −B ⊗B)
−−−→
Ry(0) =

−→
Σε ,

where the arrows indicate stacking of the columns of a matrix to form a
vector, can be solved. Because Ry(0) is symmetric the system as written
above has more equations than unknowns, so some rows of the system
might have to be dropped to solve i
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E[y] and Ry(0) for a stationary AR

• If the system has a constant term c, the mean ȳ of the stationary process
is found by solving

ȳ = Bȳ + c⇒ ȳ = (I −B)−1c .
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Inference for stationary AR models

• The same idea we have discussed for MA inference, forming the Gaussian
pdf for YT , can apply, now that we know how to form the mean and
covariance matrix.
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Differencing to allow for the possibility that the model is
non-stationary?

• By replacing yt with ∆yt we may make the series stationary, even though
some components of the original yt might be non-stationary. Even if
yt is stationary, ∆yt is just a new stationary process. So why not just
difference to be sure of stationarity?

• One problem with this: If yt was a finite order AR, ∆yt will not be.
It will have an MA component, because of the differencing of the error
term.

• Still AR’s are dense, so if the differencing induces stationarity, a finite
order AR may still give a good approximate fit.
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Differencing discards information

• If we are differencing because the data are possibly non-stationary,
we have thrown out all information about mean values. In general,
information about low-frequency (i.e. slowly varying) components of the
data is lost or de-emphasized when we fit to differenced data.

• Low-frequency connections between variables may be of central interest,
and differencing makes it hard to recover them. (We return to this issue
under the heading of “cointegration”.)
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Conditioning on initial values

The pdf of yk+1, . . . , yT , conditional on y1, . . . , yk , when y is a k’th
order AR, is given by

T∏
s=k+1

p(ys | ys−k, . . . ys−1) .

If the disturbances are normal with constant variance, we know how to give
this density function an explicit form, and it is the same form we get for
a standard normal linear regression model with the constant and lagged
y variables treated as right-hand side “Xt” variables. The MLE is OLS,
and the usual OLS formulas for standard errors correctly characterize the
posterior distribution.
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Problems with conditioning on initial conditions

• This approach also discards information. It amounts to acting as if the
distribution of the initial conditions y1, . . . , yk has nothing to tell us
about the model parameters.

• But if the model is stationary, the distribution of the initial conditions
depends strongly on the parameters and thus has a lot to tell us.
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