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MID-TERM EXAM

The exam is an extension of the model-choice exercise to a direct comparison between
the “choice of model” framework of Fernandez et al (FLS) with a Bayesian ridge regression
approach. You will also be comparing to methods for model choice: cross validation vs
Bayesian posterior odds.

Ridge regression is usually characterized as replacing the usual (X′X)−1X′y formula for
the OLS estimator with (X′X + λI)−1X′y, where λ is a tuning parameter. If the X variables
have different variances, the λI term is replaced by λD, where D is a diagonal matrix with
the diagonal elements of X′X on its diagonal. The same effect can be obtained by normaliz-
ing all the X variables to have the same variance and using the λI form.

Ridge regression can also be arrived at by using a particular conjugate prior in the stan-
dard normal linear regression model. It is then possible to calculate the posterior marginal
data density (mdd) analytically for any given value of λ and therefore, with a prior on λ an
overall integrated mdd by integrating over λ.

In the previous exercise you already calculated the mdd for the FLS setup, but this was
done with a flat prior over models. For the model comparison between ridge and FLS, a
proper prior is required for each. A proper flat prior over the 241 models is just 2−41 on
each. So the previous calculation of the log of the integrated posterior has to be reduced by
41 log(2) = 28.42.

For the cross-validation model choice part of this exam exercise, you will simply pick
a subset of 24 the countries in the FLS data set to use as a test sample, and fit both the
ridge and the FLS models to the remaining 48. Then you will predict the growth rates in
the test sample using the fitted models. For the ridge model this is straightforward. For
the FLS model, in principle you shouldmake forecasts with all the models that have non-
zero probability and weight the results together using the models’ posterior probabilities.
This may not be computationally feasible. If so, you can sort the models by their posterior
probabilities and use a feasible number of the high-probability models to weight together.

The prior for the ridge regression has to be proper in the residual variance σ2 and the
coefficients β jointly, so it should be the usual conjugate normal-inverse-gamma form. It can
be implemented by using dummy observations in which y = 0 and x =

√
Var(Xi)λei, where

ei is a unit vector with 1 in the i’th place and 0 elsewhere. The prior on σ2 can be imposed by
using a single dummy observation in which y = .01 (for example) and x = 0. This implies
an inverse-gamma distribution with scale parameter .0001 and shape parameter .5 (using
the terminology of Gelman et al in BDA3).

While the mdd for a regression model with dummy observation prior can be computed
analytically, accounting for all the terms in the normalizing constant is picky work. I need a
program that does this for my own work and have it half-written. I’ll post it to the course
web site this morning. It will be SNLMmdd(Y,X) and will return the log of the integral of
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the SNLM likelihood for the given Y and X. To use it to evaluate the mdd of a posterior,
when you have the first ntrain observations at the top of Y and X as dummy observations,
you would get the log mdd for the full Y, X, then subtract the log mdd for Y, X truncated to
include only the dummy observations.


