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A generic time series regression prior

• Should be “unprejudiced” about the effects of X-variables on y’s. We
want the data to tell us which variables matter and how big their relative
effects are.

• Most economic time series are persistent. Our prior should reflect that.
We don’t want it to suggest we are surprised when ŷt = yt−1 turns out
to be hard to beat as a forecast.

• We are more sure about persistence at low than at high frequencies. I.e.
more confident that yt is similar to the average of yt−1, . . . , yt−4 than
that yt is similar to yt−1 when past yt values have been oscillating.
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• Big coefficients on more recent lagged values are more likely than big
coefficients from more distant ones.

• Usually, we think R2 does not grow linearly with model size. The prior
should not automatically assert that models with more variables or lags
are expected a priori to have higher R2.
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Conjugate priors; dummy observations

• A conjugate prior density is one that, as a function of the parameters,
behaves just like the likelihood function for an observed model.

• Such a prior can be implemented by introducing “dummy observations”
at the start or end of the actual sample, though in general the resulting
“likelihood” needs a scale factor to be a true joint distribution over data
and parameters.

• You can think of dummy observations as “mental data”.

• For a standard normal linear regression model, such a prior is normal-
inverse-gamma. That is, it gives the variance parameter σ2 an inverse-
gamma distribution and the coefficient vector β aN(β̄, σ2Ω) distribution,
conditional on σ2.
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The conjugate prior for regression

• It makes the precision of beliefs about β depend on the equation’s
residual variance.

• This may be reasonable — we expect bigger coefficients when the scale
of variation in y is bigger.

• But if we have good reason to have a prior (say on substantive economic
grounds) that has a spread unrelated to σ2, we have a non-conjugate
prior.
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Hierarchical prior for regression

• A hierarchical prior is one with two or more layers of parameters.

• Usually at the lowest level, the parameters define a likelihood that is easy
to integrate or sample from, often conjugate.

• At the higher levels, the parameters are harder to sample from. We
might even just try a few values for them hoping results are insensitive to
them, even though in principle we should integrate over them or sample
from their distribution.

• If we condition on σ2, a normal prior for β with fixed variance is
conjugate. So we can treat σ2 as a hyperparameter in that case.

• Often we will want to treat β̄ and Ω as hyperparameters also.
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The cosine transform

Define the n× n matrix F to have j’th row

cos

(
π(k − .5)(j − 1)

n

)
,

where k indexes columns. The first row is all ones. The j’th oscillates at
frequency π(j − 1)/n

This form makes FF ′ diagonal, but not scalar, so F ′F is not diagonal.
The first row is a longer vector. So we normalize by dividing the first row
by

√
n. Then F ′F = FF ′ = n−1

2 I.

6



The cosine transform

ctmat(2), ctmat(3)

0.7071068 0.7071068
0.7071068 −0.7071068

0.7071 .7071 0.7071
0.8660 0 −0.8660
0.5000 −1 0.5000
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The dynamic regression model

{
y | yt−1, . . . , yt−ky, x1t, . . . , x1,t−k1, x2t, . . . x2,t−k2, . . . , xmt, . . . , xm,t−km

}
∼ N(Xtβ, σ

2) ,

where

Xt = (yt−1, . . . , yt−ky, x1t, . . . , x1,t−k1, x2t, . . . x2,t−k2, . . . , xmt, . . . , xm,t−km).

To deal with this as a single equation, we need to assume that if we
added equations for xjt’s conditional on lagged x’s and y’s, the likelihood
components those would generate do not involve any of the same parameters
that appear in this equation.
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A reasonable prior

Assume we’ve ordered the elements of Xt as in the model description:
lags of y, then lags of x1, then lags of x2, etc. Then the dummy observations
are a square matrix, with all except the last row block diagonal. The diagonal
block corresponding to lagged y’s or any of the lagged xj’s is

diag(smooth^(0:(n-1))) %*% ctmat(lags[j]) %*% diag(damp^(0:(n-1))) * scale(j)

In the last row, we place a vector that is constant in positions
corresponding to any given xj and approximately a mean or normal value
for that variable, together with a 1 in the lowest diagonal position, and
multiply the row by scale(nv+1). This asserts that the constant term
should make the mean of y match the predicted value from the regression
when all x’s and lagged y’s are at their means.
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A reasonable prior

The mean of β should be 1 followed by zeros, to preserve symmetry and
the idea of persistence. To make our dummy observations imply this mean,
we should make our dummy observation have a current-y vector equal to
the first column of the dummy X matrix.

One final parameter chooses the ratio of the implied error variance in
the first observation due to parameter uncertainty to the residual variance
σ2.

tsregPrior <- function(vlist, lags=rep(0, length(vlist)), ldv=1, scale,

bbar=c(1,rep(0,length(unlist(lags)-1))), smooth, damp, vmeans, erratio)
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Model “comparison” vs. model “checking” in the
simplest case

Comparison Model A says X ∼ N(1, 1), model B says X ∼ N(0, 1).

If models have equal prior probability, posterior odds are ϕ(X − 1)/ϕ(X).
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Model “comparison” vs. model “checking” in the
simplest case

Checking Erase the line for the other model, just look at height of pdf.
Obviously could be a mistake. Makes sense under an implicit “locally
uniform” alternative.

But results can be adjusted arbitrarily by taking nonlinear, monotone
transformations of the data.

Odds ratio model comparisons are invariant to montone transformations
of the data.
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Checking vs comparison in more complicated settings

• Likelihood-based model comparison “looks for” the aspects of the data
on which the ratios of the model probabilities differ most sharply.

• These may be low-probability events.

• They may be aspects of the data that don’t matter much to us.

• That’s fine if one of the models is correct. If not, likelihood may pick a
model that’s somewhat worse over most of the distribution of the data,
but much better for some narrow range of unimportant aspects of the
data.
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Examples

N(0, 1) vs. t(1, df = 5), when the truth is t(0, 5)
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Examples

yt = yt−1 + εt vs. yt = ρyt−1 + εt

when truth is
yt = .5yt−1 + .5yt−2 + εt .

For one step ahead the free-ρ model will be better. But for 100 steps
ahead, the random walk will be better, because its forecast does not decay
toward zero, and yt+s does not either. The optimal n-step-ahead forecast
converges quickly to 2

3yt+
1
3yt−1 as n → ∞, and yt is highly correlated with

this.
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Checking with test statistics

Because posterior odds may be hard to compute, or because of worries
that they may pick up model failures we’re not really interested in, it’s
appealing to look at models’ implied distribution for functions of the data,
or of data and parameters, that we are surely interested in. Call this thing
we are interested in T (X), where X is the sample data and T (X) is a
lower-dimensional function of X.
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Limited information model comparison

• Pretend all we see is T (x), so we form π(θ)p(T (x) | θi) for each model i
we are interested in, integrate these things over θi to obtain odds ratios
among models.

• This would make model choice depend on how well the model explains
T (X), which is what interests us.

• But it clearly loses information.

• It can even lead to very wrong inference.
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Example of very wrong inference

Model A: x⃗ ∼ N(0, I10)

Model B: x⃗ ∼ N(1, I10)

T (X) =
∑

X2
i

T (X) ∼ χ2(10) under Model A, non-central χ2(10, ncp = 10) under
Model B.

Observe X = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1} and therefore T (X) = 10.
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Example of very wrong inference

This X is at the peak of the Model B density function. The pdf for
X at this point under model B is ϕ(0)10 = 1.0212 × 10−4, the product of
10 normal densities at 0. The pdf for X at this point under model A is
ϕ(1)10 = 6.880631 × 10−07. The Bayes factor therefore favors Model B
by about 148 to 1. If we base inference just on T (X) = 10, though, we
find that under model B the χ2(10) with non-centrality parameter 10 has
density .02784 at the observed point, while the central χ2(10) density is
.08773, implying a Bayes factor favoring Model A over Model B by 3 to 1.
For T (X), the most likely value under Model A is the observed value 10,
while under Model B the most likely value of T (X) is about 17.
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