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Recap of dynamic panel regression

With constants ci varying across groups, short time series, model

yit = ci + yi,t−1ρ+ εit ,

we can write the likelihood for all the observables {yi0, . . . , yiT} as

N∏
i=1

q(ci, yi0)
T∏

t=1

p(yit | ci, yi,t−1) .

We use the assumption that data are independent across i and that
dependence of yit on the past is entirely through yi,t−1.
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Recap of dynamic panel regression

N∏
i=1

q(ci, yi0)

T∏
t=1

p(yit | ci, yi,t−1) .

We use the assumption that data are independent across i and that
dependence of yit on the past is entirely through yi,t−1. And the usual
assumption is

p(yi,t | ci, yi,t−1) =
1

σ
ϕ

(
yit − ρyi,t−1

σ

)
.
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Why an exogenous variable makes things more
complicated

• With no xt, we can use the model for the conditional distributions, so the
only complication is specifying the marginal joint distribution of ci, yi0.

• This approach would also work for x’s indexed only by i, though of
course their effects are not identified if we also allow unconstrained
group constants ci.
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Why an exogenous variable makes things more
complicated

• But for x’s indexed i, t, the model provides only a distribution for

yit | ci, {yi,t−s−1, xt−s, s = 0, . . . ,∞} .

• Even if xit is strictly exogenous (uncorrelated with εit at all leads and
lags), to follow the strategy we used without x’s would require forming
a joint distribution for yi0, ci, {xis, s = 1, . . . , T}.

• Giving this an arbitrary (but probably joint normal) density q to form the
likelihood conditional on xi1, . . . , xiT could work well only if T and the
dimension of xit are small relative to the number of groups.

4



Modeling the x’s

• Any approach to estimating the model with x’s involves making
assumptions on their distribution and their joint distribution with ci
and yi0.

• A straightforward approach is to extend the dynamic model to include
xit.

• New model: [
yit
xit

]
=

[
ciy
cix

]
+ ρ

[
yi,t−1

xi,t−1

]
+

[
εiyt
εixt

]
.
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VAR’s

• This is now, for each group, a vector autoregression, or VAR. (So the
whole thing is a panel VAR.)

• Two notations for a VAR:

y∗t
n×1

= ρ
n×n

y∗t−1 + ε∗t

yt = B(L)yt + εtBs = 0 for s < 0 or s > k

ρ =

[
B1 B2 · · · Bk

In(k−1) 0

]
, y∗t =


yt

yt−1
...

yt−k+1

 , ε∗ =

[
εt
0

]
.
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VAR’s

• We interpret the equation as giving a conditional distribution for yt |
{yt−s, s > 0}, via a specification for the distribution of εt, which is then
by construction independent of past y’s.

• The system is consistent with a stationary distribution for the {yt}
sequence, i.e. one in which the distribution of any finite collection{
ytj−s, j = 1, . . . , J

}
is the same for every s, if and only if all eigenvalues

of ρ are less than one in absolute value.

• Any stationary, jointly normal stochastic process can be approximated
arbitrarily well by a finite order autoregression, if k can be chosen as
large as necessary.
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• This is true both in the sense that the prediction error in using ρyt−1

to predict yt comes arbitrarily close to the minimum possible, and in
the sense that the joint distribution of an arbitrary

{
ytj, j = 1, . . . , J

}
is

arbitrarily close to the correct distribution in a mean square sense.
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