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Innovations∗

These notes cover the lecture of 10/26 and proceed slightly beyond it.

1. Linear Projection

For a random variable y and a collection of random variables {x1, . . . , xn}, we define
the linear projection operator E by

E [y | {x1, . . . , xn}] = β̂1x1 + . . . + β̂nxn , (1)

where β̂1, . . . , β̂n are the solution to

min
β1,...,βn

Var(y − β1x1 − . . .− βnxn) . (2)

In other words, E [y | {x1, . . . , xn}] is the best linear predictor of y based on {x1, . . . , xn}.
In order for this projection to be well defined, y must have finite variance. The defini-
tion obviously can be interpreted as applying to random vectors y and xj also.

Here are some useful properties of E .

(i) E is linear, meaning E [aX + bY |Z] = aE [X |Z] + bE [Y |Z], where a and b are
numbers and X, Y , and Z are vectors of random variables.

(ii) The prediction error Y − E [Y |X] is uncorrelated with any linear function of
X.

(iii) There is a law of iterated projections, formally similar to the law of iterated
expectations:

E [E [Y |X, Z] |X] = E [Y |X] . (3)

Since Y = (Y − E [Y |X, Z]) + E [Y |X, Z], the law of iterated projections then
follows from (ii) and (i).

(iv) If Cov(X,Z) = 0, then E [Y |X,Z] = E [Y |X] + E [Y |Z]. This can be derived
from (i) and (iii).

For our purposes it will be important that we can use E to project on countably
infinite collections of random variables, not just the finite lists of random variables
for which the definition (1) works. In order to do this we have to define a notion of
convergence for a sequence of random variables, and to do that we have to define a
notion of distance between random variables.

The definition of distance we will use here is the root-mean-square metric. That is,
we are taking the distance ρ(a, b) between two random variables to be

√
Var(a− b).

A sequence {an} of random variables then converges to a limit b iff Var(b − an) → 0
as n →∞. If ρ(an − am) → 0 as n,m →∞, then {an} is a Cauchy sequence, and we
can take it as defining a random variable which is its limit.
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We can now define linear projection onto an infinite sequence of random variables
as follows:

E [y | {xs, s = 1, . . . ,∞}] = lim
k→∞

E [y | {xs, s = 1, . . . , k}] . (4)

Of course there is a question as to whether the limit on the right-hand side of (4) exists,
but it turns out that the answer is always yes. Let us use ŷk to refer to E [y | {x1, . . . , xk}]
and ζk to refer to ŷk − ŷk−1. By the law of iterated projections,

ŷk = E [ŷk+1 | {x1, . . . , xk}] . (5)

(5) means that ζk+1, being the error in prediction of ŷk+1 based on {x1, . . . , xk}, is
uncorrelated with those x’s or any linear combinations of them. But ζj for any j ≤ k is
a linear combination of {x1, . . . , xk}. So we conclude that the sequence ζk of projection
revisions as we add more x’s is serially uncorrelated.

It is easy to see that

ŷk =
k∑

j=1

ζj . (6)

(Here we use the fact that ŷ0, the best linear predictor of y based on nothing, is just
zero.) Since for every k it must be true that

Var(ŷk) ≤ Var(y) , (7)

We know that Var(ŷk), being an increasing sequence bounded above, converges, and
thus that

lim
k→∞

Var(ŷk) =
∞∑

j=1

Var ζj ≤ Var(y) < ∞ . (8)

But then

Var(ŷk − ŷm) =
k∑

j=m+1

Var(ζj) −−−−→
m,k→∞

0 , (9)

meaning that ŷk is a Cauchy sequence with (therefore) a well-defined limit.
So we have proved

Proposition 1. The limit on the right-hand side of (4) exists for any sequence of
random variables {xs}∞s=1.

It is then not hard to verify that properties (i)-(iv) for E carry over to the case where
the conditioning variables are countably infinite collections of random variables instead
of just finite vectors. In the case of (ii), the property becomes

ii′. y − E [y |X] is uncorrelated with any linear combination of elements of X and
any limit of such linear combinations.
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2. Linear Prediction

We now turn our attention to a stochastic process y (possibly vector-valued) and
define the notation ŷk(t) for the best k-step-ahead linear predictor of y(t) based on
past y. That is

ŷk(t) = E [y(t) | {y(s), s < t− k}] . (10)

The innovation in y at t is ỹ(t) = y(t)− ŷ1(t). ỹ(t) forms an uncorrelated sequence,
since from its definition we know that ỹ(t) is uncorrelated with any linear combination
of {y(t− s), s > 0} or any limit of such linear combinations, and ỹ(t − s) is, for any
s > 0, a limit of such linear combinations.

We can form the projection of y(t) on {ỹ(t), ỹ(t− 1), . . . , ỹ(t− k)}, and it will take
the form

E [y(t) | {ỹ(t), . . . , ỹ(t− k)}] =
k∑

s=0

Ast ỹ(t− s) . (11)

It is important to note here that we write the coefficient matrices Ast with no k sub-
script. This is because of the absence of serial correlation in ỹ(t) and because of
property (iv) of the E operator. By the same kind of argument we went through in
proving Proposition 1, the projections in (11) have a well-defined limit as k → ∞.
Thus we can write

y(t) =
∞∑

s=0

Ast ỹ(t− s) + ȳ(t) . (12)

This equation, known as the Wold Decomposition, writes y(t) as the sum of a linear
combination of its own past innovations and another component, ȳ(t), which is defined
by this equation. This ȳ(t) component has the property that

ȳ(t) = E [ȳ(t) | {y(t− s), s > 0}] (13)

(If this were not true, ỹ(t) would not be the innovation in y(t).) This means that ȳ(t)
is perfectly predictable one step ahead. It also must be true, from the way that it is
constructed, that ȳ(t) is uncorrelated with ỹ(t− s) for any s ≥ 0. And since ȳ(t) is a
limit of linear combinations of y’s dated t and earlier, it is automatically uncorrelated
with ỹ(t + s) for s > 0.

It turns out that not only is ȳ(t) perfectly predictable one step ahead, but

Proposition 2. ȳ(t) is perfectly linearly predictable from past y’s, arbitrarily far ahead.

To see this we first note that, because ỹ(t) is for each t a limit of linear combinations
of y’s dated t and earlier, projection on {y(t− s), s ≥ 0} is equivalent to projection on
{ỹ(t− s), s = 0, . . . , k − 1; y(t− u), u ≥ k}. Since

E [ȳ(t) | {ỹ(t− s), s = 0, . . . , k − 1}] = 0 (14)

and

ȳ(t) = E [ȳ(t) | {y(t− s), s ≥ 0}] , (15)
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we can apply (iv)) to arrive at the conclusion that

ȳ(t) = E [ȳ(t) | {y(t− s), s ≥ k} , (16)

and this is true for any k. This is the result we stated in Proposition 2.
If ȳ(t) = 0, we say that y is linearly regular at t. If ȳ(t) = y(t), we say that

y is linearly deterministic. A non-stationary process could be linearly regular at
some values of t and not linearly regular at others. For a stationary process, linear
regularity or linear determinism holds for all t or none, and the coefficients Ast in the
Wold Decomposition (12) do not need the t subscript and are written simply as As.

In economic modeling, we generally take it to be unrealistic to assume that processes
have components that can be forecast perfectly arbitrarily far into the future, except
possibly for trend or seasonality components. So most models we use imply that
processes are either linearly regular or the sum of a linearly regular component and a
predictable trend or seasonal component.

The representation of a stationary linearly regular process y as

y(t) =
∞∑

s=0

Asỹ(t− s) (17)

is known as the Wold or fundamental moving average representation of y.

3. Examples of Linearly Deterministic Processes

Two kinds of stationary, linearly deterministic processes are easy to understand
intuitively. One is a process whose paths are all constant. That is, a process in which
x(t) has some finite variance distribution, but x(t) = x(t + 1) for all t with probability
one. The second (which includes a constant process as a special case) is a process whose
paths are perfectly periodic, so that with probability one x(t) = x(t− S) for all t and
some fixed periodicity S. We sometimes work with such processes as representations
of components of seasonality in economic time series.

A third kind of linearly deterministic process, though, is less obvious. Any process
whose spectral density is zero over an interval of non-zero length is linearly deter-
ministic.1 Such a process cannot be forecast perfectly from any finite span of past
data, so that Var(y(t)−E [y(t) | y(t− 1), . . . , y(t− k)]) > 0 for every k, but nonetheless
ŷk(t) = y(t). If we attempt to fit autoregressive equations to such a process, the fit will,
in big enough samples, get better and better as we add more lags, but the sequence
of coefficients will be unstable as we add lags, no matter how big the sample. Though
we do not expect to encounter such processes as data, it is worth knowing that they
exist as a limiting case. Also, trend removal and seasonal adjustment procedures may
come fairly close to making Sx zero over an interval, and they may therefore make
the adjusted data behave almost as if the process were perfectly predictable. With

1The precise result is that a process is linearly deterministic if its spectral density exists and∫ 2π

0
log(Sx(ω)) dω is not finite.
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seasonally adjusted data, for example, we may find that if we add enough lags to the
autoregressive model the fitted model starts to “unravel” the seasonal adjustment to
achieve accuracy in forecasts that would not have been possible with the unadjusted
data.

4. Fundamental and Other MA Representations

For autoregressive models of the form

B(L)y(t) = ε(t) (18)

we can always write formally

y(t) = B−1(L)ε(t) . (19)

Assuming as usual that B0 = I and the maximum lag in the model is k, we can always
find B−1(L) = A(L)’s infinite sequence of coefficients As on Ls, s ≥ 0 by polynomial
long division. Of course it could be that this sequence does not converge, in which case
(19), expressed as

y(t) =
∞∑

s=0

As ε(t− s) , (20)

does not have any meaning when ε is i.i.d. (It has no meaning since the limit of its
partial sums is not a well-defined random variable.) However, if the As sequence does
converge, in particular if

∑∞
0 AsA

′
s < ∞, then the right-hand side of (20) is well-

defined and in that case y, if it is linearly regular for all t, satisfies (20) and ε(t) is the
innovation in y. We formalize this as

Proposition 3. If

(a) ε is a finite-variance, stationary, serially uncorrelated process,
(b) B(L)y(t) = ε(t), where B(L) is a polynomial in non-negative powers of L with

B0 = I,
(c) B−1(L) = A(L), where A is a polynomial in positive powers of L with

∑∞
0 AsA

′
s <

∞, and
(d) yt is linearly regular for all t,

then y is stationary and ε(t) is the innovation in y(t).

Note that it is not assumed in this proposition that B is of finite order, just that
it is in positive powers of L with B0 = I and that B(L)y(t) is a well-defined random
variable.

To prove this proposition, we note first that (c) means that y(t) = A(L)ε(t) is one
solution to B(L)y(t) = ε(t). There are other solutions, in general, however. For any
time series (stochastic or not) z(t) that satisfies B(L)z(t) ≡ 0, y(t) = A(L)ε(t) + z(t)
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also solves (18). However, any such z is obviously linearly deterministic, and we have
assumed linear regularity for y and thus that it has no such component.2

Then (b) implies that ε(t) is a limit of linear combinations of {y(t− s), s ≥ 0}, so
that

Var (y(t)− E [y(t) | {ε(t− s), s > 0}]) ≥ Var (y(t)− E [y(t) | {y(t− s), s > 0}]) . (21)

This follows because the left-hand side is the error from a projection on limits of
certain linear combinations of past y’s, can be no better a predictor than a projection
on all possible linear combinations of past y’s. At the same time, the inequality holds in
reverse because past y’s are linear combinations of past ε’s. But then it must be that the
two error variances are equal, and thus in turn that the two forecast errors are the same
random variable.3 But from (20) it is clear that y(t) − E [y(t) | ε(t − s), s > 0] = ε(t),
and since we now know that this is the same as y(t) − E [y(t) | y(t − s), s > 0] = ỹ(t),
we have finished our argument.

From this proposition we can conclude that if we are presented with an autoregressive
model B(L)y(t) = ε(t) and the assertion that y is linearly regular and ε(t) is stationary
and not serially correlated, a sufficient condition that ε(t) be the innovation in y with
y stationary is assumption (c) of Proposition 3. Similarly, if we are presented with a
model in the form (19) or (20), with the same properties for ε, a sufficient condition that
ε(t) be the innovation in y(t) is that there be a B(L) = A−1(L) that is in non-negative
powers of L, has B0 = I and makes B(L)y(t) a well-defined random variable.

From our discussion of difference equation solutions, we can conclude that when
B(L) is of finite order and satisfies |B(z)| > 0 for all |z| ≤ 1, B(L) has an inverse
in non-negative powers of L that has a finite sum of squares. So this, with linear
regularity, is a sufficient condition that a finite order autoregressive model imply a
stationary process for y with ε as its innovation.4 The proposition also implies that if
we are presented with a finite-order A(L) in the model y(t) = A(L)ε(t), ε(t) i.i.d., a
sufficient condition that ε(t) be the innovation in y(t) is that |A(z)| > 0 for all |z| ≤ 1.

Note, though, that these are only sufficient conditions. We have discussed in class
the example of A(L) = 1−L, for which A−1 does not exist as a polynomial in positive
powers of L with convergent coefficients, but for which nonetheless y(t) = A(L)ε(t) is

2An example of a non-stationary solution to (18) that is not linearly regular, with B(L) invertible:
y(t) = ρy(t−1)+ε(t), z(t) = ε(100)ρt, y(t) =

∑
ρsε(t−s)+z(t). This y is nonstationary, has linearly

deterministic component z, and does not have ε(t) as its innovation for t = 100.
3Since both forecasts are limits of linear combinations of {y(t− s), s > 0}, their average is a pre-

dictor of y(t) based on limits of linear combinations of past y’s. If both have the same error variance,
their average has an even smaller error variance, unless the two errors are perfectly correlated, which
would imply the two predictors are the same. But no limit of linear combinations of past y’s can
produce a better predictor of y(t) than E [y(t) | y(t− s), s > 0], by definition.

4Note that if the root condition on |B(z)| fails, the conclusion is either that y is non-stationary or
that ε is not ỹ. Usually in econometric modeling we think of {B(z)} = 0 on or inside the unit circle
as implying non-stationarity, but we occasionally encounter situations where instead y is stationary
and the failure of the root condition only implies that ε is not its innovation.
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the fundamental MA representation. The necessary and sufficient versions of Proposi-
tion 3, which we state without proof, are

Proposition 4. If

(a) ε is a finite-variance, stationary, serially uncorrelated process,,
(b) B(L)y(t) = ε(t), where B(L) is a square-summable polynomial in non-negative

powers of L with B0 = I, and
(c) y is linearly regular,

then

(i) if y is stationary, ε(t) is the innovation in y(t) if and only if |B(z)| > 0 for all
|z| < 1, and

(ii) if ε is the innovation in y, y is stationary if and only if |B(z)| > 0 for all
|z| ≤ 1.

Proposition 5. If

(a) ε is a finite-variance, stationary, serially uncorrelated process, and
(b) y(t) = A(L)ε(t), where A(L) is a polynomial in non-negative powers of L with

A0 = I and
∑

A′
sAs < ∞,

then ε(t) is the innovation in y(t) if and only if |A(z)| > 0 for all |z| < 1.

5. Autocovariance Functions from MA Representations

If y(t) = (I + AL)ε(t), with Var(ε(t)) = Σ and ε i.i.d., then

Ry(0) = Var(y(t)) = E[y(t)y(t)′] =

E[ε(t)ε(t)′ + Aε(t− 1)ε(t)′ + ε(t)ε(t− 1)′A′ + Aε(t− 1)ε(t− 1)′A′]

= Σ + AΣA′
(22)

Ry(1) =

E[ε(t)ε(t− 1)′ + Aε(t− 1)ε(t− 1)′ + ε(t)ε(t− 2)′A′ + Aε(t− 1)ε(t− 2)′A′]

= AΣ
(23)

Ry(−1) = ΣA′ (24)

Ry(s) = 0, |s| > 1 . (25)

These results can be summarized as

∞∑
t=−∞

Ry(t)L
t = (I + AL)Σ(I + A′L−1) . (26)
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This formula can be generalized. Whenever y = A(L)ε, with A square-summable and
ε i.i.d. and of finite variance Σ,

∞∑
t=−∞

Ry(t)L
t = Ry(L) = A(L)ΣA′(L) , (27)

where we interpret A′(L) as inverting L as well as transposing the coefficients in A, i.e.

A′(L) =
∞∑

s=−∞
A′

sL
−s . (28)

Note that (27) involves questionable, though common, notation: one has to see from
its L argument Ry(L) that Ry here is an operator, not a function of time with matrix
values.

6. MA Representations from Autocovariance Functions

For any linearly regular process y, we have the representation (17), from which we
know we can write Ry in the form (27), with A(L) taken from the Wold representation
and Σ the covariance matrix of innovations. If A is of finite order, then Ry(L) is also
a finite order polynomial, and it is easily seen to have the property that if |Ry(z)| = 0,
it must be that Ry(z

−1) is also zero. I.e., every root inside the unit circle corresponds
to another one outside the unit circle that is its inverse. Any Ry such that Ry(L)
has its roots arranged this way and has Ry(t) = 0 for |t| > k for some finite k is the
autocovariance function of a linearly regular process, and the corresponding polynomial
in L can be factored into the form (27). Directly computing the roots of the polynomial
to carry out the factorization is feasible for scalar models of moderate order. For
multivariate models, factoring the matrix polynomials is a much messier computation
and is seldom carried out directly in practice.

Another approach for finding an MA representation from a given autocovariance
function is to use Ry to form the projection of y(t) on y(t − s), s = 1, . . . , k for
some fairly large k. This approximation to the AR representation of the process
can then be inverted to obtain an approximate MA representation. For example, if
Ry(t) = 0, 1, 2, 1, 0 for t = −2,−1, 0, 1, 2, and Ry(t) = 0 for |t| > 1, the coefficients in
E [y(t) | {y(t− s), s = 1, . . . , 5} can be found from the usual OLS formula:




2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2




−1 


1
0
0
0
0




=




5
6−2
3

1
2−1
3

1
6




. (29)

If we now invert B(L) = 1 − (5/6)L + (2/3)L2 − (1/2)L3 + (1/3)L4 + (1/6)L5 by
polynomial long division (matlab’s filter command will do this), we get as the first
10 terms:
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1.0000 0.8333 0.0278 -0.0324 0.0378 -0.0441 0.0515 0.1066 0.0145 -0.0123 .

In this case we know the true MA representation: y(t) = (1+L)ε(t). One can see that
inverting the fifth-order approximate AR has rather roughly approximated this.

7. Wold MA from Non-Wold MA

It can happen that we are presented with a model in MA form

y(t) = C(L)η(t) (30)

with η(t) i.i.d. and serially uncorrelated with finite variance Ση, but with C having
its roots in the wrong place, so η(t) 6= ỹ(t). For example, such a representation can
easily emerge if the model is derived as a linearization of a macroeconomic stochastic
equilibrium model. For analyzing the properties of the model or for fitting the model,
it may be important to be able to find the Wold representation.

Since the formula (27) relating MA polynomial to autocovariance function is valid
whether or not the MA polynomial is invertible, one brute force way to proceed is
to use C to construct Ry, then apply the ideas of the previous section to extract the
Wold representation polynomial A(L) from Ry. Sometimes, though, it makes sense to
proceed more directly. Both A and C have to generate the same Ry, i.e.

A(L)ΣεA
′(L) = Ry(L) = C(L)ΣηC

′(L) . (31)

Every root of A(L) must lie on or outside the unit circle. This means that every
root of C(L) inside the unit circle must be the inverse of a root of A(L) outside the
unit circle. So we can find A from C by finding all the roots of C and “flipping”
the roots that are inside the unit circle. That is, we can write C(L) as a product of
monomial polynomials, and replace the terms in this product corresponding to roots
inside the unit circle with terms that correspond to inverses of those roots. This is
straightforward to do for scalar y. For non-scalar y, the fact that matrix multiplication
is not commutative makes this approach many times more complicated, and we will
not discuss here how to do it explicitly. An explicit treatment appears in Rozanov
(1967, p.47), though that discussion includes an algebra slip.

Here’s an example for a simple univariate case. Suppose C(L) = 1−3.5L+1.5L2 and
σ2

η = 1. The roots of C are 2 and 1/3. The 1/3 root tells us that C is not invertible.
Writing C as the product of monomials, it is C = (1−3L)(1− .5L). “Flipping the bad
root”, we arrive at F (L) = (3−L)(1− .5L). By construction, this F has the property
that F (L)ΣηF

′(L) = C(L)ΣηC
′(L), so it implies the same autocovariance function as

C, and all F ’s roots are outside the unit circle. However, the lead coefficient in F is
F0 = 3, not one. To normalize it to 1, we have to multiply F by 1/3 and replace Ση

by Σε = 9Ση. Then with A = (1/3)F , we satisfy (31) with an A that is invertible and
that is therefore the Wold MA polynomial. It turns out as 1− (5/6)L + (1/2)L2.
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8. Shortcuts for Detecting Non-Invertibility

Some facts about invertibility that can be useful as checks:

• If C(L)ΣηC
′(L) = A(L)ΣεA

′(L) and A is the Wold MA polynomial, then Σε−
Ση is positive semi-definite. I.e., the Wold MA implies higher variance for
the disturbance than any other MA consistent with the same autocovariance
function. (This is easy to prove, and we went through the argument in class.
You should be able to reproduce it.)

• If C is of order k and is a Wold MA polynomial, Σ − CkΣC ′
k is positive semi-

definite. That is, the lead coefficient in the MA must be “bigger” (in a certain
metric) than the last coefficient. This follows because C “reversed” must imply
the same Ry as C itself, i.e. G(L) =

∑
Ck−ssL

s implies the same Ry as does
Cs. Once we see this, (8) implies the result. In the univariate case this shortcut
is particularly quick to apply, as it becomes simply |Ck| < 1.

• If C is a k’th order matrix polynomial with the smallest eigenvalue of C0 ex-
ceeding in absolute value the largest eigenvalue of

∑k
s=1 |Cs|, all roots of |C(z)|

are outside the unit circle.

9. Exercise due Friday, 11/19/99

(i) In each of the following models, determine whether it is possible that εt is the
innovation in yt and (at the same time) yt is stationary:
(a) yt = 1.8yt−1 − .9yt−2 + εt

(b) yt = 2yt−1 − .9yt−2 + εt

(c) yt = .975yt−1 − .45yt−2 + εt

(d) yt = εt − 1.9εt−1 + .9εt−2

(e) yt = εt − 2.11εt−1 + 1.11εt−2

(ii) Suppose

yt = εt +

[
1.3700 −0.6300
−0.5700 1.4300

]
εt−1 , (32)

with εt i.i.d. N(0, Σ) and

Σ =

[
0.6250 0.3750
0.3750 0.6250

]
.

Show that if y is a stationary process, then it can also be represented as

yt = νt +

[
0.7585 0.3277
0.3877 0.9915

]
νt−1 , (33)

with ν(t) i.i.d. N(0, Ω) and

Ω =

[
0.8892 −0.1662
−0.1662 0.7508

]
.
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Because these processes are all normally distributed, you can show that they are
the same processes by showing that they imply the same Ry(s) = Cov(yt, yt−s)
function.

(iii) Show that neither ν nor ε in ii is the innovation in y.
(iv) Calculate, by hand using polynomial long division or by using matlab’s filter

command, the first 6 (if by hand) to 15 (if by matlab) coefficients in the impulse
responses for the AR models in (ia)-(ic) above.

(v) Find the fundamental MAR for the y process in (ii). [Extra credit. Or maybe
a better way to put it is say that this is a puzzle for your amusement, which
you are not actually expected to solve. I think it cannot be solved directly with
any method we have yet studied.]
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