ECO 513 C.Sims Fall 2010

MODEL COMPARISON USING SIMULATED POSTERIOR DRAWS

1. The problem

- We have two or more models, indexed by i, each of which, with its prior, defines a joint pdf $p_i(y, \theta_i)$ for the data and the parameters.
- The posterior probabilities on the models are proportional to $s_i = \int p_i(y, \theta_i) d\theta_i$.
- We have no analytic formula for the integrals.

2. AN IDENTITY THAT PROVIDES METHODS

If $q_1(\theta)$ and $q_2(\theta)$ are positive, integrable functions on the same domain (i.e. can be thought of as unnormalized probability densities), with $z_i = \int q_i(\theta)d\theta$, and if $\alpha(\theta)$ is any function such that $0 < \int \alpha(\theta)q_i(\theta) < \infty$, i = 1, 2, then

$$\frac{\int \frac{q_1(\theta)q_2(\theta)\alpha(\theta)}{z_2} d\theta}{\int \frac{q_2(\theta)q_1(\theta)\alpha(\theta)}{z_1} d\theta} = \frac{E_2[q_1\alpha]}{E_1[q_2\alpha]} = \frac{z_1}{z_2}.$$

3. Specific methods

importance sampling: $\int z_2 = 1$, $\alpha = 1/q_2$, $z_1 = E_2[q_1/q_2]$. Does not use MCMC draws. Blows up if q_1/q_2 is huge for some θ 's.

modified harmonic mean: $intq_2 = 1$, $\alpha = 1/q_1$, $z_1 = 1/E_1[q_2/q_1]$. Uses only MCMC draws. Blows up if q_1/q_2 is huge for some θ 's.

bridge sampling: Pick α so both $q_1\alpha$ and $q_2\alpha$ are bounded, e.g. $\alpha = 1/(q_1 + q_2)$. Uses draws from both q_1 and q_2 .

4. OPTIMAL α

• With same number of draws from q_1 and q_2 , it's

$$\alpha = \frac{1}{z_1q_2 + z_2q_1}.$$

• Since we don't know z_1/z_2 , this is not directly a help. But if our initial guess is off, we can update it and repeat — with new z_1/z_2 , but re-using the old draws of q_2 and q_1 .

- 5. Why "bridge"?
- 6. PATH SAMPLING

Date: November 16, 2010.

^{©2010} by Christopher A. Sims. This document may be reproduced for educational and research purposes, so long as the copies contain this notice and are retained for personal use or distributed free.