ECO 521a Fall 2017

COMMENTS ON THE PHILLIPS CURVE EXERCISE

The numerical answers to this exercise varied widely, though most followed an apparently
reasonable approach.

One reason for variation was that some converted the problem to a standard LQ dynamic
optimization, requiring solving a Riccati equation (which reproduces the main computa-
tional work done by gensys). This was OK, but it made the simplest way to frame the prob-
lem be the version in which the optimizer does not see the current Phillips curve shock when
choosing 1 and 7. Since the simplest version of the problem in the gensys framework is the
version in which the optimizer does see the current shock, this is one reason for discrepan-
cies.

A second reason is that some added a constant term to the Phillips curve and some didn’t.
Real Phillips curves do have a constant, but in the examples I went through in class for this
problem I left out the constant. For calculating g0 and g1, the constant doesn’t matter, and the
c1 produced by gensys does not depend on the constant, but of course the estimated Phillips
curve itself is likely to be quite different with a constant.

A Phillps curve without a constant in this problem’s setup implies that zero inflation is
compatible with zero unemployment, except for the shocks, so it is likely to make solutions
more unrealistic.

There are in fact no existence or uniqueness problems in applying gensys to this problem.
I have not had time to trace through the code in the exercise answers to locate errors, but
students who thought they had found problems with existence and uniqueness are almost
surely mistaken.

Setting the problem up as a Bellman equation and taking FOC’s could also work in prin-
ciple, but it leads to a set of equations that are the same as those that are solved by gensys,
but with the role of Lagrange multipliers taken over by unknown partial derivatives of the
value function. There is still a need to match unstable roots to forward-looking first order
conditions, for which something like gensys is needed.

I obtained numerical solutions myself for regressions in both directions for a few values of
8, using gensys. With unemployment on the left in the regression, the coefficients on inflation
are extremely small, all through the sample. The optimal solution therefore, unsurprisingly,
pushes inflation to near zero while leaving unemployment almost the same as the historical
series. This is true both for § = 1. With 6 = .1, inflation is pushed to large negative values
for most of the sample period. This is because the response of unemployment to inflation
is estimated as positive, so pushing inflation down reduces unemployment. Nonetheless,
because the coefficients on inflation are so small, the unemployment time series is still almost
identical to the raw data.

With unemployment on the right, the regression estimates a small coefficient on current
unemployment, and a much larger coefficient on the lagged change in unemployment. That
is, at lags 0, 1 and 2 the coefficients are small, then large, nearly equal, and opposite-signed.
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The estimated coefficient on the change in lagged unemployment is around 1.5 at the start
(1960:1I) and drops steadily to around .4 at the end of the sample. With 6 = 1, the optimal
solution has unemployment above its historic value through much of the sample and infla-
tion well below its historical values. With 6 = .1 the optimal solution allows inflation to rise
to its first peak in the early 79’s but then pushes unemployment up to high levels that bring
inflation down and eliminate the 1979-80 peak.

R code that produces these results is available as a separate text file, along with the two
(nearly identical) equation system text files specifying the u-on-lleft and pi-on-left models.
The difference between the two models is only in the normalization of the Phillips curve
equation, In principle the same model could have been used for both cases, but undoing the
normalization for the estimation creates a source of confusion and error, so I used separate
models.

The code is also reproduced on the next page, in case you want to read it over rather
than use it directly. It requires the R gensys package, which is available on my subversion
server (svn://sims.princeton.edu/R/toolbox), and the cso1ve package, which is also avail-
able there. These packages are also available via http at sims.princeton.edu/yftp/gensys
and sims.princeton.edu/yftp/csolve.
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pcegP <- read.egsys ("pcexegP.txt")
## pceqU <— read.egsys ("pcexeqU.txt")

)

# up is a time series object with columns u and dp. u 1s unemployment rate in %
## and dp is inflation in % at annual rates, computed as 400xdiff(log(p)), where p
## is the chained PCE deflator. up starts in 1948, ends in 2017:1I1 (quarterly)

cf <- matrix (0, 226, 6)

for (it in 1:(242-16)) {

upt <- window (up,end=1957 + (it - 1)/ 4 + 4)

xt <-= lagts(upt, 0:2)

lsout <= 1lsfit (x=xt[ , e(1:3, 5:6)]1, y=xt[ , 4]) #regression with dp on the left
## lsout <— lsfit(x=xt[ , c(2:3, 4:6)], y=xt[ , 1]) #regression with u on the left
cf[it, ] <- lsout$coefficients

}

param <-= cf[ , c(5:6, 2:4, 1)] #these are coefficients in the order used by the

## param <— cf[ , c(2:6, 1)] #equation system. upper for dp lhs, lower for u lhs
## calculating residuals for time-t data, time-(t-1) est’d coefficients

epc <— vector ("numeric", 225)

epc <= xt[-(1:51),e(1:3, 5:6) ] * cf[=226, 2:6]

## epc <= xt[-(1:51),2:6] * cf[-226, 2:6]

epc <— apply(epc, 1, sum)

epc <—- xt[-(1:51), 4] - epc - cf[-226, 1]

## epc <= xt[-(1:51), 1] - epc - cf[-226, 1]

## epc’s start date is 1960.25, end 2017

vhat <- matrix (0, 225, 6) #225 x 6

## pcegP or U has been read in with read.eqgsys ()

pcPd <- g0gld(pceqgP) #produces new system, with derivative function

paramx <-— cbind(param|[ , -6], bet=.99, thet=.1) # need to add beta and theta, remove constant
dimnames (paramx) [[2]][1:5] <= c("al","a2","b0", "b1l","b2")

for (it in 1:225) {

pcPgl0gl <- gOgleval (pcUd, x=c(u=0,pi=0,w=0,v=0,x=0,1lm=0), param=paramx[it, ])

## constructs coefficent matrices for gensys, here treating steady state as 0 (since doesn’t matter
## for linear system)

gout <- with (pcPg0Ogl, gensys (g0, gl, cO=matrix(c(0, 0,0, cfrlit,1], 0,0), 6, 1), psi=Psi, pi=Pi))
## extract constant from cf matrix for input to gensys. Ph. curve is 4th equation.

if (!identical (gout$eu,c(1l,1))) print (time (cf) [it-1]) # flag any existence or uniqueness problem
vhat [it, ] <= with(gout, Gl %*% c(xt[51 + it, e(1,4,2,5)], 0, 0) + C + impact * epc[it])

## we store the entire state vector for each period.

}

vhat <- ts(Re(yhat), start=1961.75, fregq=4) # gensys leaves +0i terms that make its output complex
dimnames (yhat) [[2]] <= c¢("u", "dp", "ul", "dpl", "lambda", "Elambda")
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ludef
w — ul

## w is lagged unemployment

lpidef
v - pil
## v is lagged inflation

elmdef*
x1l - 1m
## x is E_t[Im(t+1)]

phcurve
pi - al * pil — a2 * vl — b0 * u — bl * ul - b2 * wl - epc

ufocx
-ul + b0 * Iml + bet * bl * Im + Dbet™2 * b2 * x
## this assumes epc 1is observed when u (and pi) are set

pifocx*
—-thet * pil - 1ml + bet * Im * al + bet"2 * x * a2
vlist

uplwvxlm

param
al a2 b0 bl b2 bet thet

shock
epc
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