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When government debt pays a lower return than private assets, the rea-

soning in Friedman’s essay on the optimal quantity of money suggests

that it would be optimal to expand the debt until its return matched that

on private assets. When the only other source of revenue is a distorting

tax, however, this is not true. In a perfect foresight model, a benevolent

government that can make credible commitments chooses a large gap

in returns initially and high distorting taxation in the distant future.

The optimal path of taxation is time-inconsistent, with ever-increasing

temptation to abandon the path.

Blanchard (2019) and Mehrotra and Sergeyev (2019) have reminded us that

real rates of return on government debt have in most years been so low that the

debt-to-GDP ratio would decline or remain stable even if the debt were simply

rolled over. That is, without any taxation to “back” the debt, with interest and

principal payments being financed entirely by the issue of new debt, the debt-to-

GDP ratio would not increase. They characterize this situation as one in which

there is zero or negative “fiscal cost” to public debt.

The possibility that when debt pays a lower return than other assets perma-

nent deficits are possible has been explored by Reis (2021) and by Mian, Straub,

and Sufi (2022), who do not include distorting taxes.

Conventional thinking about public debt sees debt as requiring fiscal backing,

so that increased debt requires increased future taxes or reduced future expen-

ditures. If the taxes are distorting, this is a burden. But if we can increase expen-

ditures on beneficial programs, or reduce distorting taxes, without any need to
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offset the resulting deficits with future increased taxes or reduced expenditures,

it appears it would be irresponsible not to exploit this possibility.

There is another approach to thinking about optimal fiscal policy that reaches

an apparently opposite conclusion, however. Friedman (1969) argued that opti-

mal monetary policy should set the nominal interest rate to zero, thereby making

the real return on money match that on other assets. If “money” pays interest,

Friedman’s prescription is that the interest rate on money should match that on

other assets. In many models, this requires taxation, either to pay explicit interest

or to contract the supply of outstanding government liabilities. So Friedman’s

prescription becomes “increase government surpluses to raise the rate of return

on government liabilities, until the rate on government liabilities matches that

on other assets”. Blanchard’s reasoning, on the other hand, might be read as

“so long as the rate of return on government liabilities is low enough, increased

deficits are desirable.”

While there are many papers on optimal fiscal and monetary policy, three of

them illustrate the range of conclusions and contradictions in this area. Chari

and Kehoe (1999a)1 show that in a model like that in this paper, an optimiz-

ing government that makes policy commitments at an initial date, will set the

liquidity premium on government debt to zero at all times.2 Woodford (1990)

reaches the apparently contradictory conclusion that in the same sort of model,

the optimal steady state may involve a positive liquidity premium. Chari and

Kehoe suggest that Woodford’s result arises because he considers only steady

state equilibria (i.e. with constant tax rates), while their results apply when

instead the government chooses a fully optimal, and non-stationary, path for

policy. However, in a paper cited by neither the Chari/Kehoe paper nor the

Woodford survey paper, Calvo (1978) showed in a very similar model that opti-

1The main argument in the Chari/Kehoe paper follows that in the earlier paper by Chari, Christiano, and
Kehoe (1996). The earlier paper considered only cash-in-advance models, while the later one covered also
money-in-utility-function models, which are equivalent to those in this paper.

2Their model, like the main version of the model in this paper, makes setting the liquidity premium to zero
impossible, but it can be set arbitrarily close to zero, and welfare improves as the premium shrinks.
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mal policy leads to a non-stationary equilibrium in which the liquidity premium

does not converge to zero. This result arises despite the fact that the government

could by appropriate policy induce a stationary equilibrium with a zero liquidity

premium.

Chari and Kehoe argue that their result depends crucially on their assumption

that balances and consumption enter the utility function separably, as a homo-

thetic aggregate (so utility is U(ϕ(C, m), L) with ϕ homothetic). Calvo considers

only models in which utility is additively separable in real government debt and

consumption, which does not in general satisfy Chari and Kehoe’s homotheticity

assumption. It might appear, then, that this is why Calvo’s result is different.

As we will see, though, this paper shows that the most important distinction

between the Chari/Kehoe paper and the other two is that Chari and Kehoe as-

sume the government has the option at “time zero” of backing the entire money

stock with interest-bearing private-sector liabilities. This then allows financing

the necessary interest payments on debt, or the contraction of the nominal stock,

without any need to use distorting taxes. The papers by Woodford and Calvo,

like this paper’s model, assume instead that the government cannot hold large

amounts of privately issued assets.

This paper works with a model that matches the assumptions on homothetic-

ity and separability in Chari/Kehoe, matches their assumption that saturation

of demand for liquidity is possible only asymptotically, and considers a possibly

non-stationary Ramsey solution. The difference that alters the result is entirely in

this paper’s assumption that the government cannot hold private sector bonds

that pay a premium return over government debt.

This paper’s model reproduces Calvo’s result that a benevolent government

that can make firm commitments to future policy optimally initially runs deficits

and generates a large gap between the return on government debt and the dis-

count rate. The optimal policy promises an ever increasing tax rate. This type

of result is probably generic. Postponing distorting taxes makes the required
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amount of taxation rise, but only at the real rate on government debt, which

is less than the discount rate. So unless the distortion costs are rising rapidly

with the tax rate, discounted utility rises when tax increases are postponed this

way. In models like this one (and Calvo’s) that assume perfectly flexible prices,

optimal policy is likely to generate immediate inflation, while in a sticky-price

model the inflation would be delayed. The same mechanism supporting delayed

tax increases would nonetheless probably apply.

Angeletos, Collard, and Dellas (2022) considers a system close to Calvo’s, but

provides deeper discussion of potential microfoundations for it. The Angeletos

et al paper also assumes real debt is taken by the government as given at time

0. It therefore does not consider the possibility of a jump in the price level at

the initial date and does not get the result in this paper and Calvo’s that optimal

initial real debt is uniquely determined.

Section I sets out a simple model in which real debt enters the objective func-

tion homothetically, but the government can borrow, but not lend. We use this

model in section II to discuss what kinds of liquidity benefits specifications might

support optimality of a steady state with no liquidity premium and in section III

to discuss determination of initial conditions by the optimizing planner. In sec-

tion IV we give the liquidity technology function an explicit linear form and

show how the steady state solutions vary with the levels of government spend-

ing and liquidity benefits. Section V shows how the results from this model

without growth can be interpreted as results for a model with growth via a sim-

ple rescaling. In section VI we consider how the price level and optimal policy

choices react to one-time, unanticipated changes in tax rates or liquidity bene-

fit levels. Section VII displays the optimal non-stationary equilibrium path for

a particular set of parameter values. Section VIII considers how results would

be affected by limited ability of policy-makers to deliver on commitments. The

final two sections discuss how broadly applicable the paper’s results are. These

sections consider parametric restrictions that could be relaxed and omitted real
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world complications that could be explored.

I. Simple model

A representative individual chooses the time paths of C (consumption), L (la-

bor), A (nominal government debt) and B (possibly interest-bearing government

debt) while taking P (the price level) and τ (the tax rate on labor) paths as given

(and known in advance). The individual’s objective is to maximize

∫ ∞

0
e−βt(log Ct − Lt) dt(1)

subject to

C ·
(
1 + f (v)

)
+

Ḃ + Ȧ
P

= (1 − τ)L − ϕ +
iB
P

+
rA
P

(2)

v =
PC
B

, B ≥ 0, A ≥ 0, L ≥ 0 .(3)

Here v is a version of “velocity”, and f (v)/(1 + f (v)) can be interpreted as the

fraction of consumption spending that is absorbed by transactions or liquidity

costs. (Henceforth we will treat “transactions costs”, “liquidity costs” as equiva-

lent and “liquidity benefits” as minus the same thing.) B is government liabilities

that provide a transactions or liquidity service, while A is government liabilities

valued only for their return. Both may pay interest, but unless demand for liq-

uidity or transaction services is saturated, i < r. τ is the proportional tax rate on

labor, and ϕ is a lump-sum tax.

An equivalent specification would define

C∗ = C · (1 + f (v))

and then make utility depend on C∗ and b = B/P, while omitting the f (v)
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term in the budget constraint. Note that if utility is of the form U(C, L), and

we rewrite the problem with C∗ but no v term in the budget constraint, and

V(C∗, b, L) = U(C, L) in the objective function, we have, by making B/P enter

the definition of C∗ only via f (v), enforced homotheticity of V in C∗, B/P. This

is important for connecting this paper’s results to Chari and Kehoe (1999b), who

emphasize that their results depend on homotheticity of utility in C∗ and b.3 The

money-in-budget-constraint formulation makes it easier to see what fraction of

spending is absorbed by transactions costs, and in particular avoids allowing

implied transactions costs becoming negative.

The linear disutility of labor and unbounded supply of labor are chosen to

make the algebra of deriving our results simpler. As should become clear, the

results don’t depend on these details of the specification.

The private agent’s problem leads to first order conditions

C · (1 + f + f ′v) = 1 − τ(4)

−τ̇

1 − τ
= i + f ′v2 − β − Ṗ

P
.(5)

r − i = f ′v2 .(6)

We assume f ′v2 is monotone increasing in v. This is automatically true if f ′′(v) ≥

0 for all v > 0, but if we want to allow for the possibility of equilibria with b = 0,

f (v) must remain bounded as v → ∞. This is possible with f ′v2 monotone in-

creasing, but there are reasonable-looking choices of f that violate monotonicity

of f ′v2. We rule them out because they raise the possibility of multiple equilibria,

which would complicate analysis of the model.

The government has to finance a given path G of expenditures, which provide

3For example, with f (v) = γv and this model’s U(C, L) = log(C)− L, we get

V(C∗, b, L) = log

((√
1 +

4γC∗

b
− 1
)
· b

2γ

)
− L .
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no utility to the private agents. Its budget constraint is

(7)
Ḃ + Ȧ

P
+ τL + ϕ = G +

iB + rA
P

.

The social resource constraint

(8) C · (1 + f ) + G = L

is derivable from the government and private budget constraints.

II. Conditions for r = i in optimal steady state

Saturating demand for liquidity, as suggested by the Friedman rule, is possi-

ble if f (v) is zero over some interval (0, v∗) and then starts increasing. We can

see that there are conditions on f that imply that the optimal steady-state equi-

librium does not saturate liquidity demand, and also conditions under which

saturating liquidity demand is at least a local optimum among steady states.

Assume that A = 0, i.e. all government debt provides liquidity services. (We

will show below that an optimizing government will always choose policies that

make A = 0.) Then the government budget constraint (7) implies that in steady

state

(9) b =
τL + ϕ − G

ρ
,

where ρ = i − Ṗ/P is the real return on government debt. From (5) we have that

in steady state

(10) ρ = β − f ′v2 .

Proposition. If in a steady state equilibrium with constant τ > 0 and ϕ
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a) f (v) = 0 for 0 ≤ v ≤ v∗,

b) f (v) and f ′(v) are both positive for v > v∗, and

c) f (v∗) = f ′(v∗) = f ′′(v∗) = 0,

the demand for liquidity is not saturated (i.e. v > v∗) in the optimal steady state.

PROOF:

Equations (4)-(6), (8), (9) and the definition v = C/b, when they have a solu-

tion for C, v, b, L, ρ and L, define a steady-state equilibrium determined by the

constant fiscal parameters τ an ϕ. From (4) we can see that, with the assumed

conditions on f and its derivatives at v∗,

dC
dτ

=
dL
dτ

= −1 at v = v∗ .

The derivative of steady-state utility log C − L with respect to τ is then

−1
1 − τ

+ 1 < 0 ,

which implies that steady state utility can be increased by reducing the labor tax

rate.

Reducing taxes raises consumption and labor input, with these effects netting

out to increase utility. Reducing taxes also reduces the equilibrium level of real

debt b, which reduces f (v). The assumption that f ′′(v∗) = 0 means that this

latter effect is negligible for small reductions in taxes.

It is certainly possible to choose a form for f and parameter values so that

the optimal steady state equilibrium does set β = ρ. If the second derivative

from the right of f , f ′′(v∗) is large enough, transactions costs rise so rapidly as

v increases that the positive effect on transactions costs of reduced τ dominate,

and v = v∗ becomes optimal.
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III. What are reasonable assumptions about initial conditions?

The government budget constraint (7) implies that total government liabili-

ties, A + B has a continuous time path. In other words, to change A + B requires

changing tax revenues τL+ϕ, government expenditures G, or interest payments

on debt iB + rA. It is unreasonable to think of any of these as being changeable

at infinite rates. Treating the rate of growth Ȧ + Ḃ as well defined at every date,

which is implied by treating (7) as a non-forward-looking equation, makes eco-

nomic sense.

The government budget constraint does not require that A and B individually

have continuous time paths. With B−0 and B+0 (for example) as notation for the

left and right limits of B at time zero, we have

(11) B−0 + A−0 = B+0 + A+0 ,

while B−0 ̸= B+0 and A−0 ̸= A−0 are possible. Private agents see themselves as

having to save out of current income to change their total assets A + B, but see

themselves as able to trade instantly with the government to any desired ratio

of A to B in their asset holdings. But then if B−0 + A−0 is non-zero, to arrive

at zero net worth at time zero requires a policy that makes P+0 infinite. If A is

bounded below, this implies in turn real balances b+0 = B+0/P+0 are zero and

that transactions costs are maximal.

While setting interest bearing debt to zero (or its minimum feasible value) is

beneficial, in the model money balances are important. Unless barter equilib-

rium (b = 0) is optimal, an optimizing government, free to choose a time path of

policy that fixes the price level at time zero, will choose a combination of infla-

tion and tax policies that make B+0 = B−0 + A−0 and thus A+0 = 0.

Another way to explain our initial date assumption is that we assume the gov-

ernment issuing nominal debt is recognized to have the option at any date of

diluting the claims of holders of the debt and of money balances by deficit fi-
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nance, but is assumed to be committed not to introduce a new currency, and

debt denominated in it, that has a higher seniority as a claim on future revenues.

Of course if the government at time zero can repudiate both existing debt and

existing currency, then issue new currency and use it to buy private sector liabil-

ities, and if it can do all this while preserving its perfect credibility, it can achieve

a better outcome than is obtainable by just setting the P+0 so that agents choose

B+0 = 0. However defaulting on outstanding debt and currency is an action

that the government is assumed never to do in the future. On the other hand

using unanticipated price level fluctuations to stabilize the real value b + a, and

maintaining a .
= 0, is not only optimal at time zero, in a stochastic version of the

model the fully committed government does this at every date.

In mapping the conclusions of this model into an actual economy, the opti-

mality of a ≡ 0 should not be taken as implying that interest-bearing debt does

not or should not exist. In reality government debt comes in many maturities,

all or most of which pay real returns lower than what is apparently available

on other investments. The b = 0 conclusion means that government debt that

exists should pay an interest rate less than or equal to what is available on other

investments, with equality only when demand for liquidity has been saturated.

If we removed the constraint that A ≥ 0, we could implement Chari and Ke-

hoe’s conclusion on optimal government actions at the initial date: repudiate (or

inflate away entirely) the existing A−0 + B−0, then issue new liquidity-providing

debt by purchasing private sector liabilities, so that A+0 + B+0 = 0. Then a pol-

icy that sets ρ = β can be financed without any use of taxation. But note that

the initial step here, the repudiation of outstanding debt at time 0, is one that

an optimizing government will be tempted to repeat, but must promise never to

repeat.
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IV. Numerical examples of optimal steady states

In this section we solve numerically for optimal stationary equilibrium with

a given constant government spending G and lump-sum tax ϕ. If ϕ were freely

variable, it would be optimal to set τ
.
= 0 and nearly saturate the demand for

liquidity. We include ϕ in the model because it may clarify thinking about con-

ditions for existence and uniqueness of equilibrium, which we take up in the

appendix. But for numerical solutions we set ϕ = 0 for convenience.

Krishnamurthy and Vissing-Jorgensen (2012) present evidence that US Trea-

sury securities have historically paid a lower yield than comparable corporate

bonds, that this cannot be explained by default risk, and that the yield spread

shrinks as the supply of treasury securities increases. They argue that Treasuries

behave much like non-interest-bearing high-powered money in these respects.

Our model in this section builds on their observations, treating all debt as pro-

viding liquidity services. Of course we are simplifying by having only one kind

of debt, with a single interest rate and maturity. The argument of the previ-

ous section, supports the idea that an optimizing government would issue only

liquidity-providing debt.

To allow explicit numerical solution, we specify a parametric form for f , f (v) =

γv

The optimizing government sets constant values for the labor tax rate τ and i,

the nominal interest rate on B. It maximizes the equilibrium value of the private

agent’s objective function (1), which in this case, restricted to steady states, is the

same as maximizing the undiscounted U(C, L) = log(C)− L. The government

takes (4), (5), (7) and (8) as constraints. Equation (5) with our linear form for f

becomes

(12) i = β +
Ṗ
P
− γv2 − τ̇

1 − τ
.
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We define

(13) ρ = i − Ṗ
P

,

which is the real rate of return on government debt.

We can rewrite the system with ρ replacing i, and, because i and Ṗ/P enter

the system only as their difference, we then have a system of 5 equations in 5

unknowns, which we assemble here for convenience:

C · (1 + 2γv) = 1 − τ(14)

ḃ = ρb + G − τL .(7)

C(1 + γv) + G = L(15)

ρ = β − γv2 − τ̇

1 − τ
(16)

v =
c
b

.(17)

Note that by using ρ, we have eliminated both i and Ṗ/P from the system. This

implies that given the time path of τ, i affects the equilibrium only by changing

the inflation rate. Changing i has no effect on the other five variables: C, v, ρ, L,

and b. Also, though τ̇ appears in the system, it of course drops out when policy

fixes a constant τ, so that equilibrium is defined by 5 ordinary equations in 5

unknowns.

As we will see below, if the optimizing government discounts future utility

at the same rate as the representative agent, keeping τ constant is not optimal.

We are in this section finding equilibrium with constant τ, and optimizing the

constant τ, which is optimal only for a government that does not discount fu-

ture utility, even though the representative agent does so. An argument in the

appendix shows that transversality and feasibility guarantee that when τ is con-

stant, b must also be constant.
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Because b can (via a jump in initial price level P0) jump at the initial date, there

is no transition path from equilibrium with one level of constant τ to another if a

one-time, permanent, unanticipated change in τ occurs. In this flex-price model,

the economy goes immediately to the new equilibrium. The same is true if there

is a one-time, unanticipated shift in a parameter, like the transactions cost or

liquidity service parameter γ, so long as τ is constant.

The equation system for the constant-τ case can be solved analytically, result-

ing in a univariate quadratic equation. With γ = τ = G = 0, the agent chooses

L = C = 1. Existence of constant-τ equilibrium requires τ > 2G − 1. In that

case, there is a unique steady state for every feasible τ, and there are no non-

steady-state equilibrium paths4, so the initial price level is uniquely determined.

Note that τ < 1, because otherwise it is optimal to set L = 0, and that therefore

constant-τ steady states require G < 1.

In the tables below τ is the optimal constant τ for the table’s assumed value

of G. It was found by a one-dimensional grid search on τ. In all the tables

β = i = .02, which means that the gap between β and ρ is generated entirely by

inflation.

γ C b L Ṗ/P U τ psurp γv
1+γv P0

0.001 0.972 1.31 0.973 0.0006 -1.001 0.026 0.0007 0.0007 0.76
0.010 0.940 2.70 0.943 0.0012 -1.005 0.054 0.0033 0.0035 0.37
0.100 0.868 5.27 0.882 0.0027 -1.024 0.103 0.0143 0.0162 0.19
1.000 0.721 9.27 0.778 0.0061 -1.104 0.166 0.0561 0.0722 0.11

TABLE 1—OPTIMAL STEADY STATE WITH G = 0, β = .02, i = .02

γ: transactions cost parameter; C: consumption; b: debt; L: labor; Ṗ/P: infla-
tion rate; U: utility; τ: labor tax rate; psurp: primary surplus; γv/(1 + γv):
proportion of consumption expenditure absorbed by transaction costs; P0 :
initial price level, assuming B0 = 1; G non-productive government expendi-
ture; β: discount rate.

Tables 1 2, and 3 show the model’s optimal steady state at various levels of

4As is shown in appendix A, uniqueness may depend on trigger policies, or small positive values for ϕ
that are negligible in equilibria but important on off-equilibrium paths.
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γ C b L Ṗ/P U τ psurp γv
1+γv P0

0.001 0.74 0.28 0.99 0.0069 -1.29 0.26 -0.0037 0.0026 3.56
0.001 0.972 1.31 0.973 0.0006 -1.001 0.026 0.0254 0.0007 0.76
0.010 0.940 2.70 0.943 0.0012 -1.005 0.054 0.0507 0.0035 0.37
0.100 0.868 5.27 0.882 0.0027 -1.024 0.103 0.0912 0.0162 0.19
1.000 0.721 9.27 0.778 0.0061 -1.104 0.166 0.1293 0.0722 0.11

TABLE 2—OPTIMAL STEADY STATE WITH G = .25, β = .02. i = .02

See notes to Table 1

γ C b L Ṗ/P U τ psurp γv
1+γv P0

0.001 0.20 0.022 0.998 0.0823 -2.627 0.800 -0.0013 0.0090 46.27
0.010 0.19 0.064 0.994 0.0855 -2.665 0.801 -0.0042 0.0284 15.55
0.100 0.17 0.171 0.983 0.0955 -2.775 0.801 -0.0129 0.0890 5.87
1.000 0.12 0.365 0.965 0.1137 -3.060 0.794 -0.0342 0.2522 2.74

TABLE 3—OPTIMAL STEADY STATE WITH G = .8, β = .02, i = .02

See notes to Table 1

government spending G and transactions cost parameter γ. Even in Table 1,

where there is no government spending to finance, it is optimal to have a positive

rate of labor tax τ, in order to induce low inflation, a positive real return ρ on

government debt, and hence a reduced incentive to conserve on real balances.

However even in this case the inflation rate does not go to zero, as would be

required to make ρ = .02 and thereby implement the Friedman rule.

The column labeled purp is the steady state primary surplus, τL − G. Steady

states with negative primary surplus exist in this model, even though in its sim-

ple form it has no growth. A permanent primary deficit arises when the real

rate of return on government debt is negative, and by choosing a low enough

constant τ, the return can be driven negative. However as can be seen from the

three tables, the primary surplus turns negative here only when G is very large,

in Table 3.

The most realistic of these cases, might be Table 2’s γ = .01 row. This produces
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a “debt to GDP” ratio of about 0.8, transactions costs absorbing about 1% of

consumption and a tax rate of 27%. In this case the optimal real rate on debt ρ

(the 2% nominal rate i minus the inflation rate) is 1.24%.

In Table 3 taxes and inflation substantially depress consumption in order to

accommodate the high level of G. Inflation is over 8%. Nonetheless the steady

state primary deficit delivers only a small fraction (about half of one percent) of

total revenue.

With τ = 0, the primary deficit is increasing in v over the whole (0, ∞) range,

and approaches .5 from below as v → ∞. Even in Table 3, where government

expenditure is taking up around 80% of output and the tax rate is about 80%, the

primary deficit remains well below its upper bound. Even though the Friedman

rule is not optimal in this model, the inflation tax produces little revenue relative

to the distortion it induces, so that it is optimal to use it to generate revenue only

when the other tax available is at highly distortionary levels.

V. Allowing for growth

The arithmetic of “zero fiscal cost” debt might seem to rest on there being

positive growth. The idea is that if the economy is growing at a rate exceeding

the real rate of return on government debt, debt can be increased today, without

any actual or expected future increases in taxation (or reductions in expenditure).

with debt nonetheless shrinking relative to output over time.

This line of reasoning is misleading. It ignores wealth effects and inflation.

People must be induced to hold the additional debt. They can be induced to do

so, even without increased taxation, but only by lowering its real value through

inflation. This is true whether or not there is economic growth.

In fact, in this paper’s model if we introduce constant labor augmenting tech-

nical progress at the rate θ and interpret C, G and psurp as ratios to eθt, the model

is unchanged except that the discount rate now has to be interpreted as the dis-

count rate β of private agents plus the rate of technical progress θ. None of the



16 AMERICAN ECONOMIC JOURNAL MONTH YEAR

table entries then change. The “β = .02” line in the captions would change to

β + θ = .02.

Of course, tables calculated with private agents’ β = .02, θ = .02, would differ

from those shown. But the difference would not be lower labor taxes at a given

G. Because the Friedman rule requires a higher return on B with an increase

from β to β + θ in the discount rate, the optimal steady state is likely to have a

positive primary surplus (that is, τL > G) even with positive θ. If we start with

the economy of the second row of Table 2 and increase θ from 0 to .02 or .04, the

optimal steady state still implies a positive primary surplus, and the primary

surplus is larger for larger θ. The increased liquidity costs from a greater gap

between ρ and β + θ more than offset the benefits from the reduction in τ that

would be possible with a permanent primary deficit.

VI. Effects of a jump in liquidity demand or in the tax rate

The model, as we have noted, goes to its steady state immediately when G and

τ are fixed. We can see the consequences of going from the optimal steady state

with G = .2 to the optimal steady state with G = .25 by comparing lines 1 and 2

of Table 4.

G τ C b L Ṗ/P U psurp γv
1+γv P0

0.20 0.220 0.768 1.00 0.974 0.0059 -1.238 0.0142 0.0076 1.00
0.25 0.266 0.721 0.83 0.977 0.0076 -1.304 0.0103 0.0086 1.21
0.20 0.266 0.729 2.51 0.932 0.0008 -1.247 0.0481 0.0029 0.40
0.25 0.220 0.712 0.15 0.996 0.2281 -1.336 -0.0310 0.0456 6.71

TABLE 4—OPTIMAL AND SUBOPTIMAL FINANCING OF G

See notes to Table 1 for variable definitions. γ = .01 for all lines. Lines 1 and
2 show solutions with optimal tax rates for the given G values. Lines 3 and
4 are solutions for given G and τ, with no optimization. Comparing lines 1
and 4 shows the change in going from G = .20 with optimal τ to G = .25
with unchanged τ. Comparing lines 2 and 3 shows the reverse case.

The table shows that it is optimal to have a positive primary surplus in both

cases, with the change in G almost entirely covered by a change in τ. The effects



VOL. VOLUME NO. ISSUE OPTIMAL POLICY WITH DISTORTING TAXES. 17

on C, L and utility U are minor. However the effects on b and P0 are substantial.

Optimal policy requires reducing b by nearly 20 per cent, and accomplishing this

mainly through a jump in the price level of over 20 per cent. Within the model,

this jump in the price level is costless, but in a richer model with sticky prices

it would be costly. That it would be costly does not necessarily imply that in a

model recognizing price stickiness a rapid temporary inflation would not be part

of an optimal solution. Avoiding the jump would require credibly announcing a

decreasing time path for the tax rate.

Comparing lines 1 and 4 shows that increasing G without any adjustment in

τ would greatly increase both the initial jump in prices and the resulting steady

state inflation rate. Thus it is possible to increase G and finance the increase

entirely without change in tax rates, but only at the cost of high inflation. Note

that it is only in line 4, where expenditure is sub-optimally increased without

any tax increase, that the steady state shows a primary deficit.

We can do a similar exercise comparing lines 1 and 2 or lines 2 and 3 of Table 2.

This lets us see the optimal policy response to a sudden increase in the demand

for B. Going either from line 1 to 2 or from line 2 to 3, we see that the values of

steady state C, L τ and U are little changed by the rise in demand for government

liquid assets. But P0 and b are drastically affected. The optimal response to the

rise in liquidity produces a downward jump in P0 by a factor of roughly 3. Unlike

an upward jump in P0, it seems possible that the jump could be eliminated by a

feasible fiscal intervention. What would be required is a sudden expansion of B0

at the initial date, in proportion to the drop in P0 that would be required without

any change in B0. This could be accomplished by a “helicopter drop” — lump

sum transfers of government paper to the public.

It is tempting to take this case of response to a rise in demand for liquidity as

roughly corresponding to the policy problems of the US (and other countries)

in the wake of the Great Financial Crisis. In this interpretation, the rise in out-

standing real debt was required to avoid rapid deflation. With debt expansion
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arising from this source, the lack of any rise in inflation or interest rates is not

surprising.

The expansion is not in itself a reason for greatly increased fiscal stringency.

Just as before the increase in real debt, the desirability of unbacked debt finance,

i.e. of increased reliance on the β − ρ gap, depends on comparing the distortion

from constricting the supply of liquidity services from government debt to the

reduced distortion from direct taxation, or the benefits from productive govern-

ment expenditures, that would be allowed by increasing reliance on low returns

on government debt. So long as inflation, interest rates on government debt, and

tax rates remain as they were before the debt expansion, the optimal balance of

seignorage vs. direct taxation is not much affected by the level of debt.

On the other hand, on this interpretation, the fact that interest rates and in-

flation have been stable in the face of the recent rise in debt cannot be taken

as implying that debt financed fiscal expansion can be continued without limit

without inflationary consequences.

VII. Optimal, time-inconsistent policy with full commitment

The discussion of steady state equilibria in the previous few sections may sug-

gest that optimal policy makes little use of the option to run permanent pri-

mary deficits and thus pushes the real rate on government debt close to the

discount rate. But if the government discounts the future at the same rate as

private agents, a benevolent government that can commit to a time path for pol-

icy will not find a steady state equilibrium to be optimal. It will in fact optimally

run primary deficits initially, while promising higher taxation in the future. The

deviations of this optimal non-stationary policy from the optimal steady state

policy are initially large.

The equation system on page 12 can be solved to allow expressing all variables

in the system as functions of v, τ, and τ̇. Dividing the government budget con-

straint by b and expressing the left-hand side (ḃ/b) and ρ as functions of τ, τ̇ and



VOL. VOLUME NO. ISSUE OPTIMAL POLICY WITH DISTORTING TAXES. 19

v produces

(18)
ḃ
b
=

−τ̇

1 − τ
− v̇

v
· 1 + 4γv

1 + 2γv
= β − γv2 − τ̇

1 − τ
+

G − τL
b

.

The terms in τ̇ cancel, allowing us to derive an expression for v̇/v in terms of τ

and v alone:

(19)
v̇
v
=

S︷ ︸︸ ︷
1 + 2γv
1 + 4γv

R︷ ︸︸ ︷(
γv2(1 + τ − 2G) + (τ − G)v − β

)
.

The two expressions in the formula for v̇/v are labeled R and S to aid under-

standing of the code for the government’s first order conditions. These two ex-

pressions and their derivatives play a central role in that code. Note that the

locus of constant-v points is defined by R = 0.

Equation (19) captures all the constraints on the government imposed by the

social resource constraint and private agent choice behavior. An optimizing

government with the same objective function as the private agent will therefore

solve this problem:

max
τ,v

∫ ∞

0
e−βt(log Ct − Lt) dt(20)

subject to (19), (14), and (15) .(21)

The first-order conditions for this problem lead, after using (4) and (8) to leave

just v and τ in the system, to two equations determining the optimal path. One

involves no derivatives (because τ̇ does not appear in the constraints or the ob-

jective function):

(22)
1

1 − τ
=

1 + γv
1 + 2γv

+ (γv2 + v)η
1 + 2γv
1 + 4γv

,
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where η is the multiplier, or costate, associated with (19).

The other is a messy expression determining η̇ as a function of η, τ, and v.

Computer code that builds up the expression from components is available in

the R function odevtau()5 online. The algebraic expression for it is omitted here,

as the code is probably easier to follow and verify.

Equation (22) allows us to substitute τ out of both the η̇ expression and the v̇

expression (19), giving us a system of two ordinary differential equations in two

unknowns, v and η.

I have not been able to compute analytical solutions to the system, but the

system is relatively simple to understand via numerical and graphical methods.

One component of the analysis sets up a 100 by 100 point grid in (τ, v) space

and calculates τ̇, v̇ pairs at every point on that grid. The locus of (approximate)

v̇ = 0 points on the grid is then the set of constant-v points.6 This locus is entirely

determined by (19) and, since it is not affected by τ̇, is also the locus of constant-

τ steady-state solutions displayed in the tables above. The locus of τ̇ = 0 points

can also be plotted on the same panel, and any intersection of the two lines is a

steady state of the planner’s problem.

In Figure 1 the green line is the locus of constant-τ steady states, the optimal

steady state from the γ = .01 line of Table 2 is the blue triangle, and the black

line, entirely above the green one, is the locus of points where the optimizing

planner sets τ̇ to zero. From the figure, it might seem that the two curves do not

intersect at all, but this is an artifact of the finite resolution of the grid. Figure 4

zooms in on a thin sliver at the left edge of Figure 1 plot, still using a 100 by 100

grid, and it is clear that the two curves do intersect — at τ = 1. (This can in fact

be shown analytically.)

In Figure 1 the red arrows indicate the direction and magnitude of change

in (v, τ) at each point, along a path satisfying the local first-order conditions

5Available at http://sims.princeton.edu/yftp/CostlessDebt/odevtau.R. This is the code actually used in
the final stages of the paper, and works with v and τ as the states rather than v and η.

6This locus easily plotted using the R contour() function.
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(Euler equations) of the planner’s problem. The planner can choose the starting

point of the economy’s path. By announcing the time paths of τ and deficits,

the planner determines the initial price level and, thereby, both v and τ at the

initial date. With the initial state freely chosen, the optimum is determined by

the initial transversality condition η0 = 0, combined with restrictions on the

path’s behavior as t → ∞.

The red arrows on Figure 1 make it clear that when starting from points above

the v̇ = 0 line, these Euler equation paths imply rapid increase in v, with τ

converging to the τ̇ = 0 line. In fact it can be shown that along such paths

v → ∞ in finite time. Since v → ∞ implies C → 0, paths like this have in-

finitely negative discounted utility and thus cannot be solutions to the optimiz-

ing government’s problem — we know there are feasible constant-τ paths that

deliver finite discounted utility.7 Paths that start well below the v̇ = 0 line lead

to steadily declining v, toward v = 0. These paths are ruled out by the private

agents’ transversality condition: as v → 0, an optimizing agent can eventually

improve on such a path by consuming part of her stock of b. This raises future

transactions costs, but only slightly if v is close to zero, while consuming a given

fraction of b produces arbitrarily high utility as b → ∞.

There is only one path (the “saddle path”) that satsifies the Euler equations

while neither diverging toward v = 0 nor diverging to v = ∞. The start of such

a path is shown as the orange line on Figure 1. It was calculated by imposing

η0 = 0 and varying v0
8 to find a line that did not diverge either to the left or

the right.9 If we could calculate the full path, it would converge to τ = 1, but

beyond the part of it shown in orange, it would on the Figure 1 graph seem to

7There is a separate question as to whether simply announcing a time path for current and future τ is
enough to guarantee a unique initial price level. We take this up in Appendix C. Ruling out explosive paths
for the price level usually requires that policy commit to higher taxes if the initial price level is above that
consistent with the saddle path.

8This method is called “multiple shooting”.
9Actually, every path calculated diverged either to the left or the right. What is shown is just the longest

path the differential equation solver could calculate before it diverged. Changes in the initial conditions in the
fourth significant digit made the solution change from the path shown (which actually crosses the green line
and shoots off to the right) to a path that parallels the green line for a while then shoots off to the left.
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coincide with the green line. They are so close, because in this range τ on the

optimal path is increasing extremely slowly. The part of the optimal saddle path

shown as the orange line is traversed over approximately 400 years. Though the

economy proceeds, if the time-0 policy commitments are honored, toward τ = 1,

it does not get close to τ = 1 for many centuries.

The time paths of several of the model’s variables are shown in Figure 2, for

the first 400 years, and in Figure 3 for the first 10 years. Inflation is high at the

start, taxes are very low, and utility is higher than in the steady-state optimum

over the entire first 10 years.

In Calvo’s model with real balances entering separably in the utility function,

it is optimal to set taxes to zero at time 0. In this model, with β = .02, γ = .01,

it turns out that optimal τ0 < 0, i.e. a labor subsidy. The optimal path delivers

considerably higher utility in the initial, low-tax periods, and utility approaching

−∞ in the far distant future. τ rises above the optimal undiscounted optimal

steady state value, but not for a long time, and the rise of τ toward 1 is very

slow. The near-term benefits of low taxes more than offset the heavy, but long-

delayed, costs of high taxes in the distant future.

To visualize the last part of the optimal path, Figure 4 zooms in on the sliver

of Figure 1 at the left edge, for v in (0,.1). There is no separate orange line, be-

cause it so nearly coincides with the green τ̇ = 0 line. Progress toward τ = 1 in

this region is extremely slow, and η → ∞ in this region. That is, the benefit of

violating the time-zero commitment to this path becomes very large. It is likely

that the temptation for a policy maker to re-initialize by dropping taxes would

be overwhelming. Note that this is different from the simple Phillips curve ex-

amples of time-inconsistency, where the benefits of abandoning commitment to

no surprise inflation are constant over time after the first period.
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FIGURE 1. BEGINNING OF OPTIMAL PATH WITH .β = .02, γ = .01, AND G = .25

Note: While the orange saddle path appears to hit the green constant-v locus, in fact it
stays extremely close to it, but always below it, and the orange, green and black lines all
meet at τ = 1, never crossing before that point. The red arrows show the derivatives of
the v, τ vectors. The derivative vectors change rapidly in the neighborhood of the green
v̇ = 0 line. In fact they parallel the green line at points just below it. The blue triangle is
the optimal steady state, corresponding to the γ = .01 line of table 2.
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FIGURE 2. 400 YEARS ALONG THE SADDLE PATH

Note: v: velocity (C/b); τ: tax rate; η: costate; C: consump-
tion; U: utility; π: inflation; b: real debt; L: labor input; ps: pri-
mary surplus. In the optimal steady state, v=.85, C=.72, U=-1.30,
pi=.0072, b=.81.
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FIGURE 3. 10 YEARS ALONG THE SADDLE PATH

Note: See note to figure 2
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FIGURE 4. END OF OPTIMAL PATH

Note: The arrows on this plot show the directions of the deriva-
tive vectors, but not magnitudes. As in Figure 1, the green line
is the v̇ = 0 locus and the black line the τ̇ = 0 locus. The optimal
path almost coincides with the green line, lying barely below it.
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VIII. Limited commitment

The infinite horizon outcome with full commitment is unlikely to be even ap-

proximately implemented in practice because of the extremely strong and grow-

ing incentive to deviate from it as time goes on. On the other hand assuming no

ability at all, even for an instant, to commit to a policy seems equally unrealistic.

Realistic models with limited ability to commit would be much more compli-

cated than this paper’s setup, but we can gain some insight from this paper’s

model if we assume an ability to commit for a fixed, known span of time.

Suppose the policy maker remains in office for T years, after which a new pol-

icy maker, unbound by the previous policy regime’s commitments, takes over,

again for a new span of T years, with this rotation of policy makers going on

forever. In most models of this type calculating optimal behavior depends on

determining how the state variables at the end of a regime affect behavior of the

policy maker in the following regime, but in our setup, because the new regime

can start with a jump in the price level, there is no effect of the terminal state at

time T on the choices of the new policy maker. Each policy maker has an initial

transversality condition that makes η = 0.

However, there can be no jump in the price level with the regime change. The

regime changes are deterministic and known by the public. A jump in the price

level after the initial date would imply an infinite positive or negative rate of

return on government debt at the regime-switch date. Private agents would at-

tempt to buy or sell debt before the price-jump date and undermine the equilib-

rium. Note that this constancy of the price level across the regime switch date is

not a constraint on the new policy-maker’s behavior. The new policy maker is

free to cause a jump in the price level. The constraint is on the previous regime:

the price level at the end of the previous regime must be exactly the value that the

new regime’s policy will choose, so there is no jump. Since the level of nominal

debt B is also assumed not to be able to jump, we can characterize this constraint

equivalently as requiring that real debt b not jump. Then, since all policy makers
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have the same objective function and constraints, the equilibrium chosen by the

policy maker in each regime is the same, and b in equilibrium takes the same

value at all policy regime-switch dates.

We can calculate the equilibrium in this limited-commitment model using the

same set of differential equations we used in the infinite-horizon, full commit-

ment model, replacing the non-explosiveness terminal condition with a con-

straint on the terminal value bT. Among optimal paths over (0, T) satisfying

η0 = 0 and bT = b∗, we choose the one with b0 = b∗, reflecting our knowledge

that all policy makers are identical.10

Figure 5 shows time paths of model variables when T = 10. Compared with

the first 10 years of the full commitment solution, the initial inflation is even

higher. The tax rate rises much more rapidly. Though utility U(C, L) briefly

goes above the steady-state optimal level, the average over the 10 years is much

lower than the optimal steady state value, whereas the full-commitment solution

delivers higher utility than the steady-state solution over the first 10 years.

That the outcome is worse when commitment is possible only over a finite

span is not surprising. Perhaps not so obvious is that recognizing the finite com-

mitment span does not damp the incentive to run initial large primary deficits

and high inflation.

IX. Are there generally useful insights from this simple, stylized, model?

This model makes strong functional form assumptions that affect its conclu-

sions, but it embodies principles that may apply more widely. Why is it optimal

to inflate early and postpone taxation? One reason is that the gap between the

return on government debt and the discount rate β means that when revenue

collection is postponed, the ratio of required future revenue to the revenue ini-

tially postponed grows slower than β. Its discounted present value therefore

10It is important that the policy optimization problem treats b0 as freely chosen and bT = b∗ as a constraint,
with no connection to b0. That bT = b0 is an equilibrium condition, not perceived as a constraint by the policy
maker.



VOL. VOLUME NO. ISSUE OPTIMAL POLICY WITH DISTORTING TAXES. 29

FIGURE 5. PATH WITH 10-YEAR COMMITMENT

See notes to Figure 2
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shrinks the more it is postponed. The solution is not indefinite postponement,

because as the required revenue grows, the costs of the distortion induced by

taxation grow more than linearly with the revenue. Another reason is that high

future seigniorage revenue, since it is anticipated, raises the current price level

and thereby reduces the base for the current inflation tax, while high future taxes

have the opposite effect on the base for the current inflation tax. These are gen-

eral principles that are likely to apply in other models.

Calvo’s model produces a qualitatively similar result. Though his framework,

unlike this paper’s, made satiation of demand for money possible in a steady

state, he showed that with full commitment the economy has high initial infla-

tion and converges to a steady state that preserves a gap between the return on

money and the discount rate.

Since abandoning the full-commitment path eventually becomes extremely

beneficial, it is unlikely that any government would actually follow the path for a

long time. But as we have seen, a solution with temporary commitment can pro-

vide lower discounted utility than a steady-state solution. The optimal steady

state solution also requires commitment, but that commitment is arguably more

sustainable. The incentive to deviate from the steady state commitment is con-

stant over time, rather than ever-growing, and it might be easier to enforce the

simpler behavioral norm of constancy in tax rates.

Nonetheless, the tradeoffs the full-commitment path brings out are likely to

affect policy discussion, especially in times of fiscal stress. The argument that a

gap between the return on government debt and market interest rates is a fiscal

resource that can be used to avoid high current levels of taxation is correct. That

this will require increased fiscal effort in the future, but only a modest increase,

and one that can be repeatedly postponed at modest cost, is also correct.

The paper’s discussion of the full-commitment case is mainly for the G = .25,

γ = .01 case. The qualitative results hold with γ = .1 or G = 0 or G = .8 instead.

The initial inflation is smaller with γ = .1. It could of course be interesting
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to vary the utility function and the transactions technology. The optimal path

has time varying consumption growth, and thus a time varying real rate. How

would that interact with production technology if we introduced capital?

The paper’s model and our discussion of it leave plenty of open questions.

X. Real world complications

Blanchard (2019), based on his Figure 15, argues that there is some evidence

for a decline in the real return on capital, measured as the rate of profit rela-

tive to market capitalization. If there is such a decline11, we could interpret it in

this paper’s model as a decline in θ, the rate of labor-augmenting technological

improvement. This would imply that the gap between the return on debt and

private asset returns might have been declining despite the stable rate of infla-

tion, and therefore that the economy has been moving toward less reliance on

seigniorage finance. This does not in itself, of course, imply that returning to

previous levels of seigniorage would be optimal.

This paper uses a representative agent model, and therefore cannot consider

intergenerational tax-shifting or “crowding out” issues. Blanchard and Mehro-

tra/Sergeyev instead assume away tax distortions in order to focus on intergen-

erational issues. Both aspects of debt finance are important, and should be con-

sidered jointly. Furthermore, liquidity premia on government debt vary some-

what across the term structure and across time, and currency, bearing no interest,

does exist. A more serious quantitative evaluation of the effects of debt finance

should consider all of these potentially important factors as operating jointly.
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THE STEADY STATE SOLUTION AND ITS UNIQUENESS

We are assuming τ constant, b > 0, C > 0, v > 0. The Lagrange multiplier

on the agent’s budget constraint is negative if τ > 1, so this is ruled out by

the agent’s optimization. (There is no reason to work if the after-tax wage is

negative.) Negative τ is in principle possible (if seigniorage is used to generate

revenue that finances a labor subsidy). With τ̇ = 0 and ḃ = 0, the system of

five equations, (14), (7), (15), (16) and (17) introduced on page 12 can be solved

recursively to deliver the single quadratic equation in v,

(A1) γv2(1 + τ − 2G) + (τ − G)v − β = 0 .

Its roots are

(A2) v =
G − τ ±

√
(G − τ)2 + 4βγ(1 + τ − 2G)

2γ · (1 + τ − 2G)
.

If τ > 2G − 1, the equation has two real roots, one positive and one negative.

Since negative v makes no sense in the model, the positive root is the relevant

one. If τ < 2G − 1, the roots could be imaginary, in which case they correspond

to no equilibrium of the model, or they can be real and of the same sign. For the

two roots to be positive, we must have G < τ. But G < τ and τ < 2G − 1 jointly

imply τ > 1, which we have noted is impossible. So the only case that delivers

an equilibrium with positive v is τ > 2G − 1, and in that case the steady state is

unique.
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IS THE STEADY STATE THE ONLY EQUILIBRIUM WITH CONSTANT τ?

The previous section shows there is only one steady state, for any τ for which

a steady state exists. But could there be non-steady-state equilibria with τ con-

stant? To check this, we allow for non-zero ḃ in the government budget con-

straint (7). The other equations in the system remain unchanged from the pre-

vious section. Our derivation of the previous equation (A1) can be repeated to

result in

(B1) − ḃ
b
= γv2(1 + τ − 2G) + (τ − G)v − β .

Since

(B2) b =
C
v
=

1 − τ

v · (1 + 2γv)
,

b is monotonically decreasing in v, going to zero as v goes to infinity and to

infinity as v goes to zero.

Proposition. Equilibria with constant τ in which b → ∞ are impossible.

PROOF:

For an individual agent, taking the path of prices, taxes, and interest rates as

given, the only state variable is b, real wealth. In any equilibrium, (4) tells us

that C < 1 at all times, so discounted utility is bounded above. Suppose there

is an equilibrium with b → ∞. It can deliver no greater discounted utility than

that provided by the (infeasible) allocation of C ≡ 1, L ≡ 0, which is finite. If

b → ∞ and therefore v → 0, C converges to a positive constant, and the real rate

of return on debt, β − γv2, converges to β. But if b gets large enough, spending

(β − ε)b on consumption plus transactions costs forever (where ε is some small

number), while setting L = 0, will appear to the competitive private agent to be

feasible. Transactions cost γC2/b increase with increased C, but since (β − ε)b
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increases linearly with C, velocity v = b/C does not change as we consider

higher consumption spending C(1 + γv) = (β − ε)b. Thus it will appear to

the private agent to be possible, as b grows without bound, to achieve a higher

discounted utility than any in allocation that is actually feasible for the whole

economy. This shows that an equilbrium with b → ∞ does not exist.

Proposition. When there is a constant-tax equilibrium with b constant at b̄, there are

no constant-tax equilibria with b > b̄.

PROOF:

The right-hand side of (B1) goes to −β as v → 0, which implies that for large

enough b, ḃ > 0. Continuity of that right-hand side, plus our result in appendix

A that a constant-tax steady state, when it exists, is unique, implies that when

a steady state exists, on any constant-tax equilibrium path with b > b̄, b →

∞, which is impossible, so when a steady state exists, there are no constant-tax

equilibria with b > b̄.

Proposition. When there is no steady state with the constant tax rate τ, there are also

no constant-tax equilibria with ḃ > 0 anywhere along the entire equilibrium time path.

PROOF:

The fact that ḃ is positive for large enough values of b implies, with no steady

state, that ḃ is positive everywhere and thus (since there is no steady state) that

b → ∞, again contradicting the hypothesis that this was an equilibrium.

Now we consider possible equilibria with constant tax rate and decreasing b.

In this model we can rule out such equilibria if we can show that they imply b

reaches zero in finite time. Since b ≥ 0 is our assumption — private agents can’t

borrow from the government — it may seem obvious that if the equilibrium path

implies b reaches zero in finite time and that ḃ < 0 at that point, the equilibrium

is ruled out.

However, as can be seen from (B2), b → 0 implies v → ∞ and c → 0, while

L → G + (1 − τ)/2. In other words, as b hits zero, transactions cost absorb all of
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spending on consumption. At this point, an individual could stop working, and

therefore have no tax obligation (if ϕ = 0), while still having no consumption.

A path converging to this point, while unpleasant, would not seem infeasible to

the private agent. Given the time path of prices and interest rates, there would

be no incentives to deviate from the path for the private agent.

This paradox can be avoided. For example, if ϕ > 0, the dynamics of the model

are unchanged, except that in (B1) and equations derived from it G is replaced

by G − ϕ/(1 − τ). If the values of ϕ and G are thought of by the agent as fixed

for all time, even after the agent’s b is exhausted, the agent will see these paths

as ones on which his tax obligations can’t be satisfied. This will increase the

agent’s initial demand for government debt, reduce the initial price level, and

thereby push the equilibrium back to the saddle path. A similar way to avoid

the paradox is a trigger policy, where the tax authority promises to introduce a

lump-sum tax if the economy starts on an explosive path. This leaves the saddle

path with ϕ = 0 unaffected, while eliminating the explosive paths.

To see how this works out in this model, we again rewrite the ḃ equation, mul-

tiplying (B1) through by b and expressing everything on the right as a function

of v:

(B3) −ḃ = (1 − τ)

(
γv(1 + τ − 2G)

1 + 2γv
+

τ − G
1 + 2γv

− β

v · (1 + 2γv)

)
.

Proposition. When τ is constant, there are no equilibria with b → 0.

PROOF:

As v goes to infinity (and b to zero), the right-hand side of this expression

converges to (1 − τ)(1 + τ − 2G)/2, a positive number if a steady state exists,

implying ḃ becomes negative and is bounded away from zero when b becomes

small. But this implies that b reaches zero in finite time. Thus a path with b

converging to zero cannot be an equilibrium. But we know that constant-tax

steady state equilibria, when they exist, are unique, and also that ḃ is negative
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for small enough b. This implies ḃ is negative for b < b̄ when the constant-tax

steady state exists, and thus that there is no equilibrium with constant τ and

b < b̄.

When there is no steady state, i.e. τ + 1 < 2G, the right-hand-side of (B3) is

negative, and therefore ḃ is positive, for large enough v (small enough b). Since

the right-hand-side of (B3) is continuous, and there is no steady state, this means

ḃ must be positive for all values of b on any equilibrium path, and threfore that

there are no equilibria with constant τ and b decreasing.

This completes the argument that when τ is constant, the only competitive

equilibria that exist are steady states, and that the steady state for a given con-

stant τ is unique.

UNIQUENESS OF THE INITIAL PRICE LEVEL

The nominal government budget constraint is

(C1) Ḃ = iB + GP − τLP .

If this holds at every moment, including the initial date, it implies that B0 is fixed

and cannot be affected by policy choices. But both our optimal non-stationary

and our fixed-τ, when they exist, imply an initial value for b = B/P that does not

depend on B. Thus our analysis implies that at time zero, the price level jumps

up or down to match B/P to the equilibrium value of b. Since the equilibrium,

when it exists, is unique, the initial price level is uniquely determined.

In our discussion of policy implications in the main text, we considered the

possibility of an instantaneous upward jump in B. It does seem plausible that

a large upward jump in B could be produced by a brief and very large transfer

payment. This would involve mailing checks to the public — which was actually

done during the pandemic. Such an action, if followed by a constant τ and G,

would affect only the initial price level, not the subsequent real equilibrium path.
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The reverse policy action, a discrete downward jump in B0, seems less plausi-

ble. Lump sum transfers are much easier to arrange than large lump-sum taxes

or wealth confiscations. In our simple representative agent model, a one-time

lump-sum tax, paid for by agents selling nominal bonds, might seem possible.

But with heterogeneous holdings of bonds, a uniform lump sum tax might not

even be feasible because of the wealth differences, while a uniform lump sum

transfer would not face such a problem.


